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Chapter 1 
BioStatistics and Microbiology: Introduction 

To compete with the many books claiming to demystify statistics, to make statistics 
easily accessible to the “terrified,” or provide an eastern approach purporting to 
present statistics that do not require computation, as in the “Tao of Statistics,” is 
tough duty, if not utter fantasy. This book does not promise the impossible, but it 
will enable the reader to access and apply statistical methods that generally frustrate 
and intimidate the uninitiated. Statistics, like chemistry, microbiology, woodworking, 
or sewing, requires that the individual put some time into learning the concepts and 
methods. This book will present in a step-by-step manner, eliminating the greatest 
obstacle to the learner (not the math, by the way) applying the many processes that 
comprise a statistical method. Who would not be frustrated, when not only must the 
statistical computation be made, but an assortment of other factors, such as the α, β, 
and δ levels, as well as the test hypothesis, must be determined? Just reading this far, 
you may feel intimidated. I will counter this fear by describing early in the book a 
step-by-step procedure to perform a statistical method – a process that we will term 
“the six-step procedure.” All of the testing will be performed adhering to six well-
defined steps, which will greatly simplify the statistical process. Each step in the 
sequence must be completed before moving on to the next step. 
 Another problem that microbiology and other science professionals often must 
confront is that most of the training that they have received is “exact.” That is, 
calculating the circumference of a circle tacitly assumes that it is a perfect circle; the 
weight of a material is measured very precisely to n number of digits; and 50 mL is, 
all too often, expressed to mean 50.0 mL exactly. This perspective of exactitude 
usually is maintained when microbiologists employ statistics; however, statistical 
conclusions deal with long-run probabilities which, by themselves, are nearly 
meaningless. In the context of microbiology, statistics can be extremely useful in 
making interpretations and decisions concerning collected data. Statistics, then, is a 
way of formally communicating the interpretation of clinical or experimental data 
and is particularly important when a treatment result is not clearly differentiable 
from another treatment. Yet, and this is the big “yet,” the statistic used has much 
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influence on the conclusions that result. A very “conservative” statistic requires very 
strong proof to demonstrate significant differences, whereas a “liberal” one requires 
less. “Yuck,” you say already, “I just want to know the answer.” 
 To this, I respond, when in doubt, use a conventional statistical method, one that 
can be agreed on and accepted by most authorities. These conventional kinds of 
methods will be presented in this book. As you gain experience, choosing statistical 
methods will become almost an intuitive process. For example, for problems in 
which you have little experience, you will be very cautious and conservative. By 
analogy, this is similar to rafting a river for the first time. If you see rapids in the 
river, you will be more conservative as you approach them – wearing a life jacket 
and helmet, and using your paddle to avoid rocks – at least until you have experi-
enced them and developed confidence. You will tend to be more liberal when near a 
sandy shore in clear, calm, shallow water. For experiments in microbiology in which 
you have much experience, your microbiological knowledge enables you to be more 
statistically liberal, as you will know whether the result of statistical analysis is 
microbiologically rational.  
 Finally, statistics is not an end-all to finding answers. It is an aid in research, 
quality control, or diagnostic processes to support critical thinking and decision-
making. If the statistical results are at odds with your field knowledge, more than 
likely, the statistical method and/or the data processed are faulty in some way. 

1.1 Normal Distribution 

Let’s get right down to the business of discussing the fundamentals of statistics, 
starting with the normal distribution, the most common distribution of data. The 
normal distribution of data is symmetric around the mean, or average value, and has 
the shape of a bell. For example, in representing humans’ intelligent quotients (IQs), 
the most common, or prevalent IQ value is 100, which is the average. A collection of 
many individual IQ scores will resemble a bell-shaped curve with the value 100 in 
the middle (Fig. 1.1). 

 
Fig. 1.1 Bell-shaped curve of intelligence quotients 
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1.1. Normal Distribution
 
 IQ scores that are higher or lower than the mean are symmetrical around it. That 
is, values ten points above (110) and ten points below (90) the mean are equal distance 
from the mean, and this symmetrical relationship holds true over the entirety of the 
distribution. Notice also that, as IQ scores move farther from the mean in either 
direction, their frequency of occurrence becomes less and less. There are approxi-
mately the same number of 90 and 110 IQ scores, but far fewer 60 and 140 IQ scores. 
 Two values are important in explaining the normal distribution: the mean, or 
central value, and the standard deviation. When referring to an entire population, 
these values are referred to as parameters. When referring to a sample, they are 
referred to as statistics. The mean (average value) of a population is represented as µ, 
and the population standard deviation, as σ. For the most part, the values of the 
population parameters, µ and σ, are unknown for a total “population.” For example, 
the true mean (µ) and standard deviation (σ) of the numbers of Staphylococcus 
aureus carried in the nasal cavities of humans are unknown, because one cannot 
readily assess this population among all humans. Hence, the statistical parameters, µ 
and σ, are estimated by sampling randomly from the target population. The sample 
mean  and the sample standard deviation (s) represent unbiased estimates of the 
population parameters, µ and σ, respectively. 
 The mean x  is the arithmetic average of values sampled from a population.* The 
standard deviation, s, describes how closely the individual values cluster around the 
mean value. For example, if all the measured values are within ± 0.1 g from  
the mean value in Test A and are within ±20.0 g from the mean value in Test B, the 
variability, or the scatter, of the data points in Test A is less than in Test B. The 
standard deviation is the value that portrays that range scatter, and does so in a very 
concise way. It just so happens that, in a large, normally-distributed data set, about 
68% of the data are contained within ± one standard deviation (s) about the mean 
(Fig. 1.2). 

 
Fig. 1.2 Normally distributed data, ±  one standard deviation from the mean 

 So, for example, if the mean number ( x ) of Staphylococcus aureus colonies on 
100 tryptic soy agar plates is 100, and the standard deviation (s) is 20, then 68% of 
the plate counts are between 80 and 120 colonies per plate (Fig. 1.3). 
                                                           
 * Also, note that, for a theoretical normal distribution, the mean will equal the median and the 
mode values. The median is the central value, and the mode is the most frequently occurring 
value. 

( x )

3



 
Fig. 1.3 Standard deviation of plate count values 

 
 If a second microbiologist counted colonies on the same 100 plates and also had 
an average plate count of x  = 100, but a standard deviation (s) of 10, then 68% of 
the count values would be between 90 and 110 (Fig. 1.4). 

 
 The second microbiologist perhaps is more precise than the first in that the 
standard deviation, or scatter range of the data around the median, is smaller. On the 
other hand, he may consistently overcount/undercount. The only way to know is for 
both to count conjointly. Let’s carry the discussion of standard deviations further. 
 ± 1 standard deviation includes 68% of the data 
 ± 2 standard deviations include 95% of the data 
 ± 3 standard deviations include 99.7% of the data 
 Figure 1.5 provides a graphical representation. 

 
Fig. 1.5 Percentages of the area under the normal distribution covered by standard deviations 

Fig. 1.4 Standard deviation of a second set of plate count values  
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1.1. Normal Distribution
 
 So, if one reads in a journal article that the x  = 17.5 with an s of 2.3, one would 
know that 68% of the data lie roughly between 17.5 ± 2.3, or data points 15.2 to 
19.8, and 95% lie between 17.5 ±2(2.3), or 12.9 to 22.1. This gives a person a pretty 
good idea of how dispersed the data are about the mean. We know a mean of 15 with 
a standard deviation of 2 indicates the data are much more condensed around the 
mean than are those for a data set with a mean of 15 and a standard deviation of 10. 
This comparison is portrayed graphically in Fig. 1.6. 

 
Fig. 1.6 a 15=x  and 2=s , vs. b 15=x  and 10=s  

 
 There is much more variability in the B group than in the A group. But then, what 

 Variability is measured by subtracting the mean of the data from each data point, 
i.e., v = xi – x
30/6 = 5. The variability of the data around the mean is xxi − . 

xxi − = v
5 – 5 = 0
6 – 5 = 1
3 – 5 = –2
5 – 5 = 0
7 – 5 = 2
4 – 5 = –1
Sum = 0

 
 The variability is merely a measure depicting how far a data point is from the 
mean. Unfortunately, if one adds the individual variability points, v, they sum to 0. 

there should be the same value weights more than and less than the mean that cancel 
each other out. A correction factor will be introduced in the next section so that the 
variability points around the mean will not cancel each other out. Variability is often 
interchanged with the term statistical error. Statistical error does not mean a 
mistake, or that something is wrong; it means that a data point differs from the mean. 
 There are times when statistical variability can mean missing a target value. For 
example, suppose I cut three boards 36 inches long. Here, the variability of the board 
lengths is the difference between the actual and target value. Suppose the boards 
actually measure 35.25 in., 37.11 in., and 36.20 in..  
 

. Take the data set [5, 6, 3, 5, 7, 4].  The mean is (5+6+3+5+7+4)/6 = 

This makes sense in that, if the data are distributed symmetrically about the mean, 

is variability? It is the scatter around the mean of the specific values. 
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35.25 – 36.00 = –0.75 
37.11 – 36.00 = 1.11 
36.20 – 36.00 = 0.20 

 
 I guess this is why I am not a carpenter. The biggest difference between the 
variability of data around a mean and variability of data around a target value is that 
the sum of the individual points of difference, xx − , using the mean will add to 0, 
but using the x-target value usually will differ from 0. 

xi – x
i

 Let us now discuss the concepts of mean and standard deviation more formally. 

1.2 Mean

 
µ = [mu] is the population mean. That is, it is the average of all the 
individual elements in an entire population – for example, the population 
mean number of bacteria found in the lakes of Wisconsin, or the 
population mean age of all the microbiologists in the world. Obviously, it 
is difficult, if not impossible to know the true population mean, so it is 
estimated by the sample mean, x . 
 
x  = [x bar, or overline x] is the sample mean, or the arithmetic average of 
a sample that represents the entire population. Given the data are normally 
distributed, the sample mean is taken to be the best point estimator of  
the population mean. The calculation of the sample mean is 

n

the sample number. More technically, nxx
n

i
i∑

=

=
1

 

 
Σ = [sigma] means “summation of.” So anytime you see a Σ, it means add. 
The summation sign generally has a subscript, i = 1, and a superscript, n. 
That is, ∑

=

n

i
ix

1
, where i, referring to the xi, means “begin at i = 1” (x1), and 

n means end at xn. 
 

 The sub- and superscripts can take on different meanings, as demonstrated in the 
following. For example, using the data set: 
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 =  -0.93 + 0.92 + 0.01 = 0 

The mean, or arithmetic average, plays a crucial role. We are interested in two 

x  – target =  -0.75 + 1.11 + 0.20 = 0.56 

classes of mean value – a population mean and a sample mean. 

sample value, and . . .  x  = the last sample value. The subscript designates 
1 2( )nx x x x n= + + +… , where x1 = the first sample value, x2 = the second 
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1.3. Variance and Standard Deviation
 
 

i  xi 
1  6 
2  7 
3  5 
4  2 
5  3 

i = 1 through 5, and as the last i, 5 also represents n. 32576
1

++++=∑
=

n

i
ix ; 

i 3

325543

5

3
++=++=∑

=
xxxx

i
i  

Likewise, 

25764321

1

1
+++=+++=∑

−

=

xxxxx
n

i
i  

and 

576321

3

1
++=++=∑

=

xxxx
i

i  

Often, for shorthand, we will use an unadorned sigma, ∑ ,  to represent ∑
=

n

i 1
 with any 

changes in that generality clearly signaled to the reader. 
 

1.3 Variance and Standard Deviation 

As stated earlier, the variance and standard deviation are statistics representing the 
difference of the xi values from the x  mean. For example, the mean of a data set, 

 The individual data point variability around the mean of 128 is 
 

118 − 128 = −10

126 − 128 = −2
137 − 128 = 9
148 − 128 = 20

Sum = 0
 

makes sense – because the x  is the central weighted value, this summation will 
never provide a value other than 0. So, we need to square each variability value 

( )2xxi −  and then add them to find their average. This average, ( )
n

xxi∑ − 2

, is 
referred to as the variance of the data. 

and the sum of the variability points  is zero. As previously noted, this ( )xxi∑ −

however, if i = 3, then we sum the x  values from x  to n = 5. Hence, 

x  = (118+111+126+137+148)/5 = 128.  

111 − 128 = −17
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variance = ( ) ( ) 80.174
5

874
5

20921710 22222

==
++−+−+−  

entire population. 

2σ  = [sigma squared] = the true population variance 
( )

N
x∑ −

=
2µ

 

where µ = true population mean, and N = true population size. 
2σσ =  = [sigma] = true population standard deviation 

Again, because the entire population can rarely be known, the sample variance is 
computed as 

( )
1

2
2

−

−
= ∑

n
xx

s  

Note that we divide by n − 1, not n. This is because we lose a degree of freedom 
when we estimate µ by x . 

s = standard deviation = 2s  

 In hand-calculating s, a shortcut calculation is 
1

22

−

−
= ∑

n
xnx

s , which is generally 
faster to compute. 
 Two other important statistics of a data set are mode and median. 

1.4 Mode of Sample Data 

The mode is simply the most frequently-appearing numerical value in a set of data. 
In the set [4, 7, 9, 8, 8, 10], 8 is the mode. 

1.5 Median of Sample Data 

The median is the central numerical value in a set of data, essentially splitting the set 
in half. That is, there are as many individual values above it as below it. For data that 
are an odd number of values, it is the middle value of an ordered set of data. In  
the ordered data set [7, 8, 10], 8 is the median. For an ordered set of data even in the 
number of values, it is the sum of the two middle numbers, divided by 2. For the 
ordered data set [7, 8, 9, 10], the median is 8+9/2 = 8.5. This leads us directly into 
further discussion of normal distribution. 

1.6 Using Normal Distribution Tables

As discussed earlier, the normal distribution is one of the most, if not the most, 
important distributions encountered in biostatistics. This is because it represents or 
models so many natural phenomena, such as height, weight, and IQs of individuals. 
Figure 1.7 portrays the normal distribution curve. 

Likewise, the mean, the variance, and the standard deviation can be in terms of the 
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1.6. Using Normal Distribution Tables
 
 Because the normal distribution resembles a bell, it often is termed the “bell-
shaped curve.” The data have one central peak, that is, are “unimodal,” and are sym-
metrical about the mean, median, and mode. Because of this symmetry, the mean = 
median = mode.  

 
Fig. 1.7 A normal distribution, the “bell-shaped curve” 

 
 Most statistical methods associated with normal distributions utilize the mean and 
the standard deviation in their calculations. We already know that 68% of the data lie 
between µ +σ and µ − σ standard deviations from the mean, that 95% of the data lie 
between the mean and two standard deviations (µ + 2σ and µ – 2σ, or µ ± 2σ), and 
99.7% of the data lie within three standard deviations of the mean (µ ± 3σ). These 
relationships describe a theoretical population, but not necessarily a small sample set 
using the same mean ( x ) and standard deviation (s). However, they are usually very 
good estimators. So, whenever we discuss, say, the mean ± 2 standard deviations, we 
are referring to the degree to which individual data points are scattered around the 
mean (Fig. 1.8). 

 
Fig. 1.8 The mean ± 2 standard deviations for a set of data 

 
 In any given sample, roughly ninety-five percent (95%) of the data points are 
contained within sx 2± . 
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 The z Distribution is used to standardize a set of data points so that the mean will 
be zero, and the standard deviation, 1, or x  = 0, s = 1. The transformation is z = (xi – 
x )/s. A z = 2.13 means the value is 2.13 standard deviations to the right of the mean. 
A z = –3.17 means the value is 3.17 standard deviations to the left of the mean. The 
normal z Distribution table can be rather confusing to use, and we will use the 
Student’s t Distribution in its place, when possible. This will not always be the case, 
but for now, we will focus on the Student’s t Distribution. When the sample size is 
large, n > 100, the Student’s t Table and the normal z Distribution are identical. The 
advantage of the Student’s t Distribution is that it compensates for small sample 
sizes. The normal curve is based on an infinite population. Because most statistical 
applications involve small sample sizes, certainly fewer than infinity, the normal 
distribution table is not appropriate, for it underestimates the random error effect. 
The Student’s t table (Table A.1) compensates for smaller samples by drawing the 
tails out farther and farther (Fig. 1.9). 

 
Fig. 1.9 Student’s t Distribution versus the normal distribution 

 
 To use the Student’s t Table (Table A.1), we need two values: 
  1. Sample size (n), and 
  2. α (alpha) level. 
 As you are now aware, the sample size is the number of experimental observations. 
The confidence level, 1 – α, is the amount of area under the distribution curve with 
which one is working. Generally, that value is 0.95; that is, it incorporates 95% of 
the area under the curve. The α level is the area outside the confidence area. If one 
uses two standard deviations, or a 95% confidence area, the α level is 1 – 0.95 = 
0.05. The α = 0.05 means that 5% of the data are excluded. Note that there is nothing 
to figure out here. These are just statements. 
 In all the tests that we do using the Student’s t table, the sample size will always 
be provided, as will the degrees of freedom. The degrees of freedom will be design-
ated as df.  If df = n – 1, and n = 20, then df = 20 – 1 = 19. Or, if df = n1 + n2 – 2, and 
n1 = 10 and n2 = 12, then df = 10 + 12 – 2 = 20. The smaller the df value, the greater 
the uncertainty, so the tails of the curve become stretched. In practice, this means the 
smaller the sample size, the more evidence one needs to detect differences between 
compared sets of data. We will discuss this in detail later. 
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1.6. Using Normal Distribution Tables
 
 The df value is used to find the Student’s t tabled value at a corresponding α 
value. By convention, α is generally set at α = 0.05. So, let us use Table A.1, when 
α = 0.05 and for n = 20; hence, df = n – 1 = 19. 
Using the t table: 
 Step 1. Go to Table A.1. 
 Step 2. Find df in the left column labeled v. Here, v = 19, so move down to 

v = 19. 
 Step 3. When you reach the 19, move right to the column corresponding with the 

α value of 0.05. 
 Step 4. Where the v = 19 row and the α = 0.05 column meet, the tabled value = 

1.729. 

 
Fig. 1.10 The t tabled value = 1.729, an upper-tail value 

 
 The table, being symmetrical, provides only the upper (positive), right-side t tabled 
value. The 1.729 means that a t test value greater than 1.729 is outside the 95% 
confidence area (Fig. 1.10). This is said to be an upper-tail value. A lower-tail value 
is exactly the same, except with a minus sign (Fig. 1.11). 

 
Fig. 1.11 The t tabled value = –1.729, a lower-tail value 

 
 This means that any value less than –1.729 is outside the 95% region of the curve 
and is significant. Do not worry about the t test values yet. We will bring everything 
together in the six-step procedure. 
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1.7 Standard Error of the Mean

To this point, we have discussed the variability of the individual xi data around  
the mean, x . Now, we will discuss the variability of the sample mean, x  itself, as it 
relates to the theoretical (“true”) population mean, µ. The standard deviation of the 
mean, not the data points, is also termed the standard error of the mean. In most 
statistical tests, the means of samples are compared and contrasted, not the data 
points themselves. Error, in this sense, is variability. The computation for the 
standard error of the mean, xs , is: 

  
n
ssx =  or 

n
s 2

 

 What does the standard deviation of the mean represent? Suppose ten sample sets 
are drawn randomly from a large population. One will notice that the sample mean is 
different from one sample set to another. This variability is of the mean, itself. 
Usually, one does not sample multiple sets of data to determine the variability of the 
mean. This calculation is done using only a single sample, because a unique 
relationship exists between the standard deviation of the mean and the standard 
deviation of the data that is proportional to data scatter. To determine the standard 
error of the mean, the standard deviation value of the sample data is simply divided 
by the square root of the sample size, n. 

  
n
ssx =  
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Finally, a two-tail test takes into account error on the upper and lower confidence 

0.05 2 = 0.025. 

is 2.093. This means −0.2093 and 2.093. 

 

 
This table uses both values, −2.093 and 2.093. It is the upper and lower test 

Step 1. Go to Table A.1. 

Step 3. when you read the 19, move right to the column corresponding to a/2 = 

Step 4. Where the v = 19 row and the a/2 = 0.025 column meet, the tabled value 

Using the t table: 
levels. Here, you use two values of a, but you divide it, a/2. a = 0.05 = 0.05 2 = 0.25.

jointly, with a being divided by 2, a/2 . 

Step 2. Find the df in the left column labeled v. Here, v = 19, so move down to v=19. 

Fig. 1.12 Two-Tail Test



1.8. Confidence Intervals
 

Key Points 

s = Standard deviation of 
the data set  nssx =  = Standard deviation, not 

of the data set, but of the mean 

1.8 Confidence Intervals 

Most of the work we will do with the normal distribution will focus on estimating the 
population mean, µ. Two common approaches to doing this are: 1) a point estimate 
and 2) calculation of a confidence interval estimate. The point estimate of µ is simply 
the sample mean, x . The interval estimate of µ is ( ) nstx n 1,2 −± α , with a confidence 
level of 1 – α. 
 Data Set. Suppose you are to estimate the true mean weight of each of 10,000 
containers in a single lot of bacterial growth medium. Each container is supposed to 
contain 1 kg of medium. Ten are randomly sampled and weighed. The weights, in 
grams, are  

n xi 
1   998 
2 1003 
3 1007 
4   992 
5   985 
6 1018 
7 1009 
8   987 
9 1017 
10 1001 
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 The standard deviation of the mean has the same relation to the mean as the standard 
deviation of data has to the mean, except it represents the variability of the mean, not 

xsx ± , 68% of the time the true mean, µ, is 
contained in that interval. About 95% of the time, the true mean value µ will lie 
within the interval, xsx 2± . And about 99.7% of the time, the true mean value µ will 
lie within the interval, xsx 3± . 

 

the data (Fig. 1.13). That is, for the mean 

Fig. 1.13 The standard error of the mean 



 Step 4. Compute the 95% confidence interval. 
  ( ) nstx n 1,2 −±= αµ  

  ( ) 22.870.1001104843.11262.270.1001 ±=±=µ  
  92.100948.993 ≤≤ µ  
 This simply means that, if a large number of samples were collected, say 100, 
then 95 out of 100 times, the true weight mean will be contained in the interval: 

  92.100948.993 ≤≤ µ  

1.9 Hypothesis Testing

In statistics, one of the most, if not the most important goal is hypothesis testing. 
Hypothesis testing can be boiled down to three test questions. Suppose you are 
comparing two methods of product extraction, say Methods A and B. There are three 
questions we can test: 
  1. Does Method A produce greater extraction levels than Method B? 
  2. Does Method A produce lower extraction levels than Method B? 
  3. Do Methods A and B produce different extraction levels? 
 Question 1. Does Method A produce greater extraction levels than Method B? 
Notice that a connotation of “better” or “worse” is not a part of the hypothesis; that 
valuation is determined by the researcher. If greater extraction means better, fine, but 
it could also mean worse. The point is that, if this question is true, A – B > 0. An 
upper-tail test determines whether Method A produces greater extraction levels than 
does the second method, Method B, or simply if A > B. 
 Question 2. The second question, whether Method A produces lower extraction 
levels than does Method B, is in lower-tail form. If the answer is yes, then A – B < 0. 
 Question 3. The question as to whether Methods A and B are different from one 
another in extraction levels is a two-tail test. If the answer is “yes,” then A – B ≠ 0. 
Extractions by Method A do not have to be greater than those by Method B  
(an upper-tail test), nor do they have to be lower (a lower-tail test). They merely have 
to be different: A > B, or A < B. 
 Hypothesis testing is presented through two independent statements: the null 
hypothesis (H0) and the alternative hypothesis (HA, sometimes written as H1). It is the 
HA statement that categorizes the tail of the test, and this should be articulated first. 
Do not let these concepts confuse you . . . we will make them crystal clear in coming 
chapters. 
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What are the point and interval mean estimates? Let α = 0.05 and df = v = n – 1. 
 Step 1. Calculate the mean. 

  70.1001
10

10017
10

100110171003998
==

++++
=∑ …

n
xi  

 Step 2. Calculate the standard deviation. 

  ( ) 4843.11
9

7.10011010035215
1

222

=
−

=
−

−
= ∑

n
xnx

s  

 Step 3. Go to Table A.1 (the Student’s t table). 
  Find α/2 = 0.05/2 = 0.025, with n – 1 = 10 – 1 = 9 degrees of freedom = v.  
  t(0.025, 9) = 2.262. (α is divided by 2, because this is a two-tail test [to be fully 
discussed in detail later].) 



  
 

Chapter 2 
One-Sample Tests 

Often, a microbiologist needs to measure samples from only one population and  

2.1 Estimation of a One-Sample Mean 

Recall from Chapter 1 that, in biostatistics, the true population mean, µ, is estimated 
by the sample mean, x , and the population standard deviation, σ, is estimated by the 
sample standard deviation, s. Recall also that the x  is an unbiased estimate of µ, 
given the sampling of the population provides a valid representation of the 
population.* 
 
 

                                                 
* In sampling a population, all elements of the population must be available to the sampling 
procedure. For example, if one wanted to identify the prevalence of Avian flu in India, the 
sampling must be throughout all of India, which is probably impossible from a practical 
viewpoint. If a microbiologist sampled from Calcutta, Delhi, and Mumbai (formerly Bombay) 
and stated that the sample “represented India,” this statement would be erroneous. The most 
one could conclude would be the prevalence in these three cities. Even then, more than likely, 
certain destitute people would not be available to the sampling schema, so the study could not 
be generalized to “all individuals” in these three cities. These kinds of potential sampling bias 
and restriction must be evaluated before one can generalize sampled data to a larger 
population. 
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with normally distributed data. 
standard level for quality control purposes. In this chapter, we will be concerned only 
population colony count, and then may want to compare that count measurement to a 
it to a standard. For example, through a series of dilutions, one can estimate the true 
1) estimate its mean and standard deviation through confidence intervals, or 2) compare 
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 The variability in the data (variability of individual data points from the mean) 
measured by the standard deviation is really a measurement of uncertainty as to the 
true parameters of a population. Uncertainty is random variability inherent in any 

the forces at play in a controlled, nonrandom environment move it toward a non-
controlled, random state. The larger the value of s, the greater the uncertainty. 
 Most of the time, one is more interested in the width of the confidence interval 
that contains the true mean than merely calculating the mean and standard deviation. 
The standard one-sample confidence interval formula is: 

  
n
stx 2αµ ±=  

where µ = true, or population, mean, x  = sample mean = ∑ , and tα/2

t table value for a two-tail α value. If α = 0.05, then α/2 = 0.05/2 = 0.025. That is, 
0.025 is used to identify the t-tabled value for a total significance level of α = 0.05. 
The degrees of freedom used in the t table is n – 1. s = standard deviation = 

( ) 12 −∑ − nxx or, using the calculator formula, 122 −∑ −= nxnxs , and n = 
sample size. 
 A two-tail test includes both the lower and upper sides of the normal distribution 

 

Let us look at the situation where α = 0.05. For an upper-tail, as well as a lower-tail 

test, both the upper and lower regions are involved but still cover 5% of the curve, 

 
Fig. 2.2 α Portion of normal distribution curve for one-tail (a) & two-tail (b) tests 

 Example 2.1. A microbiologist dispensed ten “10 mL” aliquot samples of tryptic 
soy broth using an automatic dispenser system. The microbiologist wants to provide 
a 99% confidence interval for the true dispensed volume. Hence, α = 0.01. The 
volumes of the samples in milliliters are presented in Table 2.1. 

2. One-Sample Tests 

(Fig. 2.1A), while a one-tail test refers either to the upper or the lower side of the 

controlled experimentation grounded in the Second Law of Thermodynamics; that is, 

normal distribution (Fig. 2.1B or Fig. 2.1C).  

Fig. 2.1 Normal distributions for two-tail (A), upper-tail (B), & lower-tail tests (C) 

test, (Fig. 2.2A), the α region covers 5% of the total area of the curve. For a two-tail 

α/2 = 0.05/2 = 0.025, or 2.5% of the normal curve in each tail (Fig. 2.2.B). 
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2.1. Estimation of a One-Sample Mean
 

Table 2.1 Sample volumes in milliliters, Example 2.1 

n   x  
1 10.2  
2 10.1  
3  9.8  
4 10.3  
5 10.1  
6  8.5  
7  9.2  
8 10.2  
9  9.8  
10 10.3  
 5.98=∑ x  

∑=x  

  ( ) ( ) ( ) ( ) 58.0
110

85.93.1085.91.1085.92.10 2222

=
−

−+−+−=s  

  ( ) ( ) 250.39,005.0110,201.01,2 === −− ttt nα  (Table A.1, Student’s t Table). 

  tx 2αµ ±=

  ( ) 58.0250.385.9 ±=µ   60.085.9 ±  
  , or rounded, 4.102.9 ≤≤ µ  
 
within the interval 9.2–10.4 mL. Perhaps a new automatic dispenser system is in 
order. 

Key Point 
 
In the field, most microbiologists will use a personal computer with statistical 
computation ability. This greatly speeds up the calculation processes and is 
valuable, so long as one understands the statistical reasoning behind the 
processes. Note that computer round-off procedures often create minor 
discrepancies, relative to the hand calculations. 
 

 
 Table 2.2 is a printout of a MiniTab® software routine. It provides the sample 
size, n, the mean, x , the standard deviation, s (St Dev), the standard error of the 
mean ns  (SE mean), and the 99% confidence interval (99% CI). 

Table 2.2 MiniTab® software printout of sample size, mean, standard deviation, standard error 
of mean, and 99% CI 

Variable n Mean ( x ) St Dev (s) SE Mean ( )ns  99% CI 
x 10 9.85000 0.57975 0.18333 9.25420, 10.44580 
      

 
 

n = 98.5 10 = 9.85

10

(x)

+K+ 9.8−9.85

9.25≤ µ ≤10.45

(s n ) 

This means that 99 out of 100 times, the true mean volume, µ, will be contained 
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 It is sometimes useful to plot the actual xi data points to visualize how they are 
spread in order to better understand the data set (Fig. 2.3). 

 
Fig. 2.3 Individual xi plot, Example 2.1 

 Notice that the data are more “piled up” in the upper values. The mean value, 
9.85, being the average volume, is not the center of the data set, as is the median 
value. Although this normal distribution discrepancy does not invalidate the 
confidence interval calculation, it is often worth assessing whether the values used 
are the correct ones and seeking to understand the microbiological reason, if any, for 
the results. Because there are only ten values, it is not to be expected that the mean 
would be located closer to the center of the data set. 

 Example 2.2. From a clinical specimen of sputum, a microbiologist wishes to 
estimate the number of microorganisms per milliliter of sputum. To do this, serial 
dilutions of the specimen were performed in triplicate, and dilutions were plated in 
duplicate. To replicate an experiment means to repeat the entire process (in triplicate, 
in this example). Performing duplicate plating is not duplicate sampling. Figure 2.4 
presents a schema of the experiment, one replicate plated in duplicate, and Fig. 2.5 
presents the data from three complete replicates at the 10−4 dilution. 
 

Key Point 

One of the requirements of the parametric statistics used in this text is that the 
data be linear. Microbial growth and the colony counts that represent it are 
exponential. Therefore, a log10 transformation of microbial colony counts must be 
made. For example, the log10 value of 10 × 104 = 1.0 × 105 = 5.0 log10. 
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2.1. Estimation of a One-Sample Mean
 

 
 

Fig. 2.4 One replicate plated in duplicate, Example 2.2 
 

Suppose the dilution selected is 10−4, and the duplicate plate count data from the 
10−4 dilution replicates were as follows: 
Replicate 1 2 3 
Repeated measure 
(CFUs) 37, 97 58, 79 102, 65 

Mean count 
(CFUs) 67 68.5 83.5 

Next, convert to 
exponential 67×104 68.5×104 83.5×104 

Multiply by 
exponent 670,000 685,000 835,000 

Log10 linearize 
the data 

log10 (670,000) 
= 5.8261 

log10 (685,000) 
= 5.8357 

log10 (835,000) 
= 5.9217 

The log10 populations from the triplicate samples are now averaged. x  = (5.8261 
+ 5.8357 + 5.9217)/3 = 5.8612 in log10 scale. 

 
Fig. 2.5 Experiment in triplicate, plated in duplicate, Example 2.2 

19



The most probable number of organisms per milliliter = 5.8612 log10 ≈ 7.25 × 105 
per mL. The 95% confidence interval is ( ) nstx n 1;2 −±= αµ , where x  = 5.8612 and 
n = 3.  

 ( )
1

2

−
∑ −=

n
xxs  

 ( ) ( ) ( )
13

8612.59217.58612.58357.58612.58261.5 222

−
−+−+−=  

 0526.0=  
 ( ) ( ) 303.413,205.01,2 == −− tt nα , from Table A.1, the Student’s t table. 

 nstx 2α±  

  ( )30526.0303.48612.5 ±  
  1307.08612.5 ±  
  9919.57305.5 ≤≤ µ , which is the 95% confidence interval. 
 The same result is accomplished with the MiniTab® statistical software package 
(Table 2.3). 

Table 2.3 95% Confidence interval, Example 2.2 

Variable n Mean St Dev SE Mean 95% CI 
x 3 5.86117 0.05264 0.03039 (5.73039, 5.99194) 

 
 Please be mindful, it is important to understand the statistical process behind the 
software-generated data. Also, note that the 95% confidence interval represents the 
confidence interval for the true mean, not any particular value. 

2.2 Comparing One Sample Group Mean to a Standard Value 

Sometimes, one will want to determine if a particular sample set mean is 
significantly different, larger, or smaller than a standard value. This can occur, for 
example, in preparing a microbial aliquot or a reagent and comparing to a standard 
reference. The comparison can be done in two basic ways: 
 A. Confidence intervals. Confidence intervals provide an estimate of the 1 – α 
range of values that may contain the true population mean, µ, based on x , the 
sample mean. 
 B. t-test (use for sample vs. standard value testing). This test compares a sample 
set to a standard value, but does not estimate the range within which the true mean 
can be found.  

2.2.1 Confidence Interval Approach 

Is there a significant difference between a test sample and a standard value in that the 
test sample is significantly more or less than the standard? The interval approach 
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2.2. Comparing One Sample Group Mean to a Standard Value
 
uses a 1 – α confidence interval to determine if it differs from a sample interval, 

( ) nstx n 1;2 −±= αµ . If the standard value is contained within the sample confidence 
interval, they are considered not significantly different. If the standard value is 
outside the 1 – α confidence interval, they are considered different at the α level. I 
will employ the six-step procedure to make certain we do not get lost. 
 

 
Confidence Interval Approach (comparing a standard value to the sample mean) 
 
 
Step 1. Formulate the hypothesis. 
H0: the sample mean is not different from the standard value (sample = standard) 
HA: the sample mean is different from the standard (sample ≠ standard) 
 
Step 2. Determine α, and select the sample size, n. 
Often, these are already established from prior knowledge; if not, they need to be 
established now, prior to conducting the test or experiment. 
 
Step 3. Select the statistical test to be used. 
This is important, so as to plan the experiment/test, instead of running an 
experiment and then trying to determine what statistical test to use. 
 
Step 4. Specify the acceptance/rejection of the alternative hypothesis, also known 
as the decision rule. At this time, one determines what constitutes the rejection of 
the null hypothesis at the specified α level. For this comparison of a sample and a 
standard, it will merely be that the sample confidence interval does not contain the 
standard value. 
 
Step 5. Perform the experiment/test. 
At this point, one actually conducts the experiment, not before, and computes the 
statistic based on the method selected in Step 3. 
 
Step 6. Make the decision based on the computed confidence interval and the 
standard value. At this point, one evaluates the computed statistic on the basis of 
the decision rule and either accepts or rejects the H0 (null) hypothesis. 
 

 
 Example 2.3. A microbiologist, in a time-kill kinetic study, needs to achieve a 108 
(≈ 1.0 × 108) initial population of microorganisms per milliliter with a standard 
deviation of no more than 0.8 log10, prior to beginning the test. The problem, 
however, is that there is no way for the microbiologist to know if the initial 
population is 108/mL prior to actually conducting the study.  
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 The microbiologist would like to use the turbidity of a broth culture as an 
indicator for predicting the initial population. The microbiologist needs to do two 

data is within 0.80 log10. If it is greater than 0.80 log10, the microbiologist will not 
10, according to laboratory 

protocol. Second, the microbiologist wants to assure the mean log10 population is 
contained in a 1 – α confidence interval. 
 Step 1. Specify the test hypothesis. 
 First, we must keep in mind that the standard deviation of the samples must not 
exceed 0.80 log10. This will not be considered a hypothesis, but a restriction on the 
test. Let us, then, focus on the specific hypothesis. 
  H0: mean initial population = 108 per mL, or 8.0 log10/mL 
  HA: log10 mean initial population ≠ 8.0 log10 /mL 
 Step 2. Set α and the sample size. We will set α = 0.05, and the appropriate 
degree of broth turbidity will be established on the basis of nephelometer 

 Step 3. Write the test statistic to be used. We will use ( ) nstx n 1;2 −±= αµ , where 
t(α/2; n – 1) is the tabled t value in Table A.1. 
 Step 4. Formulate the decision rule. Because we must calculate s to get the 
confidence interval of the sample, this is a good place to evaluate the restriction on s. 
So, if s > 0.8, do not continue. If s is not greater than 0.8, compute the confidence 
interval. If the 1 – α interval, ( ) nstx n 1;2 −± α , does not contain 8.0 log10 population, 
reject the H0 hypothesis at α = 0.05. 
  t(α/2; n – 1) = t(0.05/2; 5 – 1) = t0.025; 4 = 2.776, from Table A.1. 
 Step 5. Perform the study.  
 The microbiologist plates three different turbidity levels, replicating each level 
five times. Based on the data in Table 2.4, Suspension 2 appears to be the optimal 
choice. 

Table 2.4 Microbial suspension sample counts (log10)a 

 Suspension 
 1 2 3 
Replicate    
1 7.21a 8.31 9.97 
2 6.97  8.17 8.83 
3 7.14  7.93 9.21 
4 7.28  8.04 9.19 
5 6.93  7.97 9.21 

   a Average of counts (each sample plated in duplicate) 
 
 Suspension 2 Data: 
  084.8=x  
  s = 0.1558 >/  0.8; because the computed standard deviation is much less 
than the tolerance limit, the microbiologist continues. 
  ( ) ( )51558.0776.2084.81;2 ±=± − nstx nα   8.084 ± 0.1934 

2. One-Sample Tests 

use the sample, because the standard cannot exceed 0.80 log

things in this experiment. First, she/he must assure that the standard deviation of the 

measurement and plating five samples of a suspension. Hence, n = 5. Note this is a 
two-tail test; therefore, α= α/2=0.05/2=0.025 

= =
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2.2. Comparing One Sample Group Mean to a Standard Value
 
  7.8906 ≤ µ ≤ 8.2774  7.89 ≤ µ ≤ 8.28 
  7.89 is the lower boundary, and 8.28 is the upper boundary of the 95% CI. 
 Step 6. Because 8.0 is within the 95% confidence interval (7.89–8.0–8.28), the 
initial population for Suspension 2 is considered not different from 8.00 at α = 0.05. 
Also, the test standard deviation is well within the limit of 0.8 log10. 
 Some may argue with this conclusion because two samples were not at least 8.0 
log10/mL. If the standard is based on the average value, then Suspension 2 should be 
used. If not, Suspension 3 provides values that each meet the minimum 8.0 log10 
requirement, but we may need to assure that s >/  0.8 log10. 
 
2.2.1.1 Lower-Tail Test: Determining if a Sample Set Mean is Less than 
a Standard: Confidence Interval Approach 

 Step 1. Specify the test hypothesis. 
  H0: 8≥x  (the sample mean is at least 8.0 log10/mL) 
  HA: 8<x  (the sample mean is less than 8.0 log10/mL) 
 Step 2. Set α and specify n. 
  α = 0.05 
  n = 5 
 Step 3. Write out the test statistic to be used. 

 In other words, the interval from the mean value to the lower bound. 
 Step 4. State the decision rule. 

 Step 5. Perform the experiment. 
  At α = 0.05, for a one-tail confidence interval with n – 1, or 5 – 1 = 4 
degrees of freedom, tα = 2.132 (from Table A.1). We already have the data necessary 
to our calculations: 084.8=x , s = 0.1558, and n = 5. 
  8.084; 8.084 – 2.132 (0.1558/ 5 ) = 8.084 – 0.149 = 7.935 
  The interval ranges from 8.084 to 7.935 log10/mL.  
 Step 6. Make decision. 
 Because 8.0 is included in the sample interval, one cannot reject H0 at α = 0.05.*  
 

                                                 
* This is the average sample value. However, if one wants to assure that the average can be no 
less than 8.0 log10/mL, the H0 hypothesis is rejected, because 7.935 is lower than 8.0. It is 
important to identify what one means in statistical testing. 

( ); 1
; ( )

n
x x t s n

α −
−  

  If the test statistic interval calculated is, on the average, less than 8.0 log10 
(lower bound of confidence interval), the mean x  and 

( ); 1
( )

n
x t s n

α −
−  interval will 

not include 8.0, and H0 is rejected at α = 0.05.  

One can also determine if, on the average, a sample set of values is less than a standard 
value. The test range for this is x , 

( ); 1
( )

n
x t s n

α −
− , with df = n – 1. For example, 

suppose that, from our Example 2.3, the goal was to assure that the sample 
population average was not less than the 8.0 log10/mL standard requirement. 
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2.2.1.2 Upper-Tail Test: Determining if a Sample Set Mean is Greater 
than a Standard: Confidence Interval Approach 

 Step 1. State the hypothesis.  
  H0: 0.8≤x  log10/mL (sample mean is less than or equal to the standard) 
  HA: 0.8>x  log10/mL (sample mean is greater than the standard) 
 Step 2. Set α, and select n. 
  α = 0.05 
  n = 5 
 Step 3. Write out the test statistic. 

 Step 4. Make the decision rule. 
  If the computed test interval contains 8.0, one cannot reject H0 at α. 
 Step 5. Perform the experiment. 
  t(0.05; 4) = 2.132 (as before), a one-sided tabled value from Table A.1. 
  084.8=x  
  s = 0.1558 
  8.084; 8.084 + 2.132 (0.1558/ s ) = 8.233 
  The interval ranges from 8.084 to 8.233 log10/mL. 
 Step 6. Make the decision. 
 Because the upper confidence interval does not contain 8.0, reject H0 at α = 0.05. 
There is good reason to believe the sample set mean is greater than 8.0 log10/mL of 
the initial population. Here, the microbiologist would be better advised to choose 
turbidity sample 1. 

2.2.2 Use of the Student’s t Test to Make the Determination of a Sample 
Mean Different, Less than, or Greater than a Standard Value 

The basic formula for making this determination is: 

  
n
s

cxtc
−=  

where tc = calculated t value, x  = sample mean, c = standard value, s = standard 
deviation of the sample, and n = sample size. 
 
2.2.2.1 Two-Tail Test 

Let us continue with the data from Example 2.3. Here, recall that 8.0 log10 
microorganisms per milliliter was the standard for the initial population. Now, for 
the two-tail t test, we want to know if the sample mean population and the standard 
differ significantly. We can use the six-step procedure to determine this. 

2. One-Sample Tests 

The same approach used in the lower-tail test can be used in upper-tail tests, except 
the test statistic is 

( ); 1
, ( )

n
x x t s n

α −
+ . Suppose the microbiologist could have an 

initial population average no greater than 8.0 log10/mL. 

  x ; 
( ); 1

( )
n

x t s n
α −

+  
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2.2. Comparing One Sample Group Mean to a Standard Value
 
 Step 1. State the hypothesis. 
  H0: x  = the standard of 8.0 log10/mL 
 HA: x  ≠ the standard of 8.0 log10/mL 
 Step 2. Set α, and specify n. 
  As before, we will use α = 0.05 and n = 5. 
 Step 3. Write out the test statistic calculated (tc). 

  

n
s

cxtc
−=  

 Step 4. Write out the decision rule, based on the t-tabled value (tt). 
  tt = ttabled = t(α/2; n – 1)  
  tt = t(0.025, 4) = 2.776 from Table A.1. 
 Because this is a two-tail test, we have both lower and upper tabled values to 
consider, or tt = –2.776 (t-tabled lower value) and 2.776 (t-tabled upper value). So, if 
tc > 2.776 or tc < –2.776, reject H0 at α = 0.05 (Fig. 2.6). 
 

 
Fig. 2.6 Example 2.3, Step 4, two-tail test diagram 

 
 Step 5. Conduct the experiment. 
  We already know that: 
   084.8=x  log10/mL 
   s = 0.1558 log10/mL 
   n = 5 
   c = 8.0 log10/mL 

   2052.1
0697.0
084.0

5
1558.0

0.8084.8 ==−  

 Step 6. Make the decision. 
 Because tc = 1.2052 >/  2.776, one cannot reject H0 at α = 0.05. There is no strong 
evidence that the sample and control values differ. 
 
2.2.2.2 Lower-Tail Test 

For this test, we want to be sure that the sample mean x  is not less than the standard, 
8.0 log10/mL. 
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 Step 1. State the hypothesis. 
  H0: ≥x  standard (true population mean is at least 8.0 log10/mL) 
  HA: <x  standard (true population mean is less than 8.0 log10/mL) 
 Step 2. Specify α, and set n. 
  α = 0.05 
  n = 5 
 Step 3. Write out the test statistic. 

  

n
s

cxtc
−=  

 Step 4. State the decision rule. 
 Because this is a lower-tail test, tt will be a negative tabled value from Table A.1.  
tt = t(α; n – 1) = t(0.05; 4) = 2.132, or –2.132 (Fig. 2.7). 
 

 
Fig. 2.7 Example 2.3, Step 4, lower-tail test diagram 

 
 So, if tc < –2.132, reject H0 at α = 0.05.  

 Step 5. Conduct the experiment. 
  084.8=x  log10/mL 
  s = 0.1558 log10/mL 
  n = 5 
  10/mL 

  2052.1

5
1558.0

0.8084.8 =−=ct  

 Step 6. Make the decision rule. 
c </  –2.132, one cannot reject H0 at α = 0.05. There is no 

evidence that the sample mean is less than the standard at α = 0.05. 
 
2.2.2.3 Upper-Tail Test 

 Step 1. State the hypothesis. 
  H0: ≤x  standard of 8.0 log10/mL 
  HA: >x  standard of 8.0 log10/mL 
 Step 2. Set α and n. 
  As before, let us set α = 0.05 and n = 5. 
 
 

2. One-Sample Tests 

 logc = 8.0

 Because t  = 1.2052
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2.2. Comparing One Sample Group Mean to a Standard Value
 
 Step 3. Write out the test statistic calculated. 

  

n
s

cxtc
−=  

 Step 4. State decision rule. 
  If tc > tt, reject H0 at α. 
  tt = t(0.05, 4) = 2.132 from Table A.1 (Fig. 2.8). 
 

 
Fig. 2.8 Example 2.3, Step 4, upper-tail test diagram  

  So, if tc > 2.132, reject H0 at α = 0.05. 

 Step 5. Conduct the experiment. 
  084.8=x  log10/mL 
  s = 0.1558 
  n = 5 
  c = 8.0 log10/mL 

  2052.1

5
1558.0

0.8084.8 =−=ct  

 Step 6. Make the decision. 
 Because tc = 1.2052 >/  2.132, one cannot reject H0 at α = 0.05. Although there is 
not enough evidence to claim that 8.084 > 8.0, it can be. This is not the conclusion 
reached using the confidence interval approach, which ranged from 8.084 to 8.204 
log10/mL. 
 

Key Point 
 
REMEMBER: CONFIDENCE INTERVALS ESTIMATE PARAMETERS, 
 
AND STATISTICAL TESTS TEST PARAMETERS 
 

 
 The reason for this is that the confidence interval approach provides an estimate 
of the 1 – α range of the true mean in terms of an interval. In this case, it is the upper 
one-half of the interval that did not contain the standard. Yet, when the standard is 
compared or “tested” to the sample, the sample is not significantly greater than the 
standard at α. This subtlety must be recognized. Tests test if differences exist; 
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confidence intervals predict the region where one expects the true population mean 
to be found at 1 – α confidence. 
 If 8.0 is a control value, it would be wiser to use the confidence interval 
approach. If one wants to determine if 8.084 is greater than 8.0, and it turns out to be, 
there is no penalty; then, the significance test can be used. 

2.3 Determining Adequate Sample Sizes for One-Sample 
Statistical Tests 

A fundamental consideration of statistics is determination of an adequate sample 
size. This is exceedingly important in order to detect differences that are significant. 
So the question of interest, when using a t test or other statistic, is whether the 
sample size is large enough to detect a significant difference if one is present. The 
smaller the sample size, the greater the difficulty in detecting differences between a 
sample and a standard value, because the confidence interval of the sample increases 
in range due to increasing uncertainty. The t test and other hypothesis-testing 
statistics are weighted heavily to guard against Type I, or alpha (α) error (stating a 
difference exists when one does not) at the expense of committing a Type II, or beta 
(β) error (stating no significant difference exists, when it actually does). 
 So, at the beginning of any experiment, one must define microbiologically just 
what constitutes “a significant difference” between a sample set average value and a 
control value. For example, if the sample population differs from a standard by 1.0 
log10, that may be important, but what about 0.5, 0.1, or 0.001 log10? The value for 
the α error often is set at α = 0.05 in microbiology. An α of 0.05 (a Type I error 5 
times out of 100) is good for most general work, but what about flying on a plane? 
No one would fly at that risk level; it is too high. The α value would have to be more 
like 0.0000001, at least for me. 
 Also, note that what microbiologists call significant difference (technically 
termed detection level) is inversely related to sample size. It is the value chosen as 
being important for the statistician to detect. As the sample size increases, the 
detectable difference between a standard and a sample gets smaller, because the test 
becomes more sensitive. That is, one is able to detect smaller and smaller 
differences. Of course, economics comes into play, in that one is limited by what 
sample size can actually be accommodated, due to cost, supplies, or logistics, so 
balance is necessary. 
 The variability, or standard deviation of the sample set is also important. The 
more variable the data – that is, the greater the spread between the individual data 
points and the sample mean – the greater is the standard deviation, and the greater 
the sample size must be in order to detect important differences. The same goes for 
the alpha level. An α of 0.05 requires a larger sample size than does an α of 0.10 to 
conclude significant difference. 
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2.3. Determining Adequate Sample Sizes for One-Sample Statistical Tests
 
2.3.1 Quick Sample Size Formula: Sample Set Mean Versus a Standard 
Value 

A quick formula for determining sample size is  

  2

22
2

d
szn α≥  

where n = sample size, z = normal distribution tabled value*, d = detection level 
considered to be important, and s = standard deviation of the sample data, based on 
previous knowledge.** 

Key Point 
 

 

Table 2.5 Brief z value table for sample size determination 

α zα/2 
0.001 3.291 
0.0025 3.090 
0.005 2.807 
0.01 2.576 
0.025 2.326 
0.05 1.960 
0.10 1.645 
0.25 1.282 

 
 Example 2.4. A microbiologist wants to be able to detect a 0.1 log10 difference 
from a standard value. Anything less than 0.1 log10, in her opinion, will not be of 
value. So, she sets α = 0.01, finds that zα/2 = z0.005 = 2.576 (Table 2.5), and lets s = 
0.1558, based on previous work. Therefore, n ≥ (2.5762(0.1558)2)/0.12 = 16.1074. 
Hence, n ≥ 17 (whenever there is a remainder, round up). A sample size of 17 should 
enable the microbiologist to detect 0.1 log10 differences between the standard value 
and the sample mean. 

 
 
* To be completely correct in sample size determination, the t distribution can be used, but it 
requires that one perform a series of iterations.  A more straight-forward approach based on 
the z distribution is presented here that, in practice, works satisfactorily for the vast majority of 
microbiological applications.  For the moment, we will use Table 2.5 to represent the z normal 
distribution table. We will look at the use of the t distribution later in this chapter. 
** Here, a practical problem exists in determining the sample size prior to running the 
experiment.  Before the sample size can be estimated, one must know the variability (variance 
[s2]) of the data.  But one most often cannot know that until the experiment is run . The 
variance must be estimated based on other similar experiments, if possible. If none exist, 
guess.  But be conservative, and use your experience in microbiology.  After the experiment 
has been completed, recalculate the sample size based on the known variance (s2) for future 
reference. 

 

 

in your knowledge of microbiology. 
Statistical tests are but an extension of your thinking. Ground results of analyses
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2.4 Detection Level 

Also of importance is determining a relevant detection level, d. A good 
microbiologist cannot be satisfied with a sample size that provides an arbitrary value, 
so s/he will want to know what the limit of detection is for a given sample size. The 
basic sample size formula can easily be restated to determine the detection level. 
 

  2

22
2

d
szn α=  

  
n
szd

22
22 α=  

  
n
szd

22
2α=  

 Suppose n = 10, α = 0.01, and s = 0.1558. 

  ( ) 1269.0
10

1558.0576.2 22

==d  

 The detection level is 0.13 log10. So, if a difference between a sample set and a 
standard value is 0.13 log10 or greater, it will be detected. 

2.5 A More Accurate Method of Sample Size Determination 

The use of the Student’s t distribution (Table A.1) provides a more accurate 
estimation of the sample size, n, but also is a more difficult computation, requiring 
an iterative process. The basic sample size formula, adapted to the Student’s t 
distribution, is: 

  ( )
2

22
1;2

d
stn n−≥ α  

the t value, when one does not know what the sample size, n, should be. To solve this 
problem, one uses a “seed” value of n that is excessively large, not smaller than what 
one suspects will be the actual n, because the algorithm will solve the problem faster. 
The value of n predicted from solution of that first iteration becomes the new seed 
value for the next, and so on. This process continues until a n seed value that is 
calculated equals the n value of the previous iteration.  

Key Point 
 
For preliminary work: 
– Use the z calculation method 
– Estimates as “worst case” 
Once one has a reliable value of s that can be applied, one can switch to the t 
table method. This, of course, presumes the experiment in question will be 
repeated often enough to be worth the extra effort. 

The problem is the n – 1 degrees of freedom value that is required for determining 
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 The z computation is easy, but if one does not have a good estimate of a standard 
deviation before the experiment is conducted, neither computation will be of much 
value. However, once the study has been conducted, recompute the sample size 
calculation, using the actual s value. For example, suppose on completion of the 
above study, s = 0.317. The sample size chosen was 10, but with the knowledge of s 
being greater than the original estimate, one would like to know how this increase 
affected the experiment. Computing the actual detection level is of great value here. 
 

  ( ) ( ) 3258.0
10

317.0250.3 2222
1;2 === −

n
std nα , 

 
which is unacceptably larger than the expected level of detection. This has greatly 
reduced the statistic’s ability to detect significant differences. 
 The problem is that, with this experiment, the actual standard deviation is 
0.317/0.1 = 3.17 times larger than the desired detection level. To have a detection 
level of 0.1 log10 will require the sample size to be larger, probably much larger. In 
this type of situation, it may be better to retrain personnel or implement automation 
such that the experiments can be performed with a much lower standard deviation, 
instead of ratcheting up the sample size. Finally, one can always increase the value 
of d (minimum detectable difference), but accepting that this will make the 
experiment less accurate. 
 Let us now, using the iterative process and the Student’s t distribution (Table 
A.1), compute the sample size required. What should the sample size for α = 0.01, s 
= 0.317, and d = 0.10 log10 be? First, we overestimate n, such as n = 150. We stop 
the iterative process once the current sample size calculated equals that previously 
calculated. 

  Sample size formula: ( )
2

22
1;2

d
stn n−≥ α  

  Iteration 1. t(0.01/2; 150 – 1 = 149) = 2.576 (Table A.1), so 
    n1 = [2.5762(0.317)2]/0.12 = 66.68 ≈ 67 
 
  Iteration 2. t(0.01/2; 67-1 = 66) = 2.660, so 
    n2 = [2.6602(0.317)2]/0.12 = 71.10 ≈ 72 
 
 Next, the calculated n value for Iteration 2 is used as the tabled n for Iteration 3. 
 Iteration 3. t(0.01/2; 71 – 1 = 70) = 2.660, so 
    n3 = [2.6602(0.317)2]/0.12 = 71.10 ≈ 72 
 
 Because n3 = 72 and n2 = 72, the iterative process ceases. The experiment needs 
about 72 people to have a resolution of 0.1 log10.  
 Let us compare the t-tabled sample size calculations with those calculated earlier 
via the z distribution using the data from Example 2.3. 
  s = 0.1558  d = 0.10 log10  α = 0.01 
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  Let us first estimate n = 25. 
  Iteration 1. t(0.01/2, 25 – 1 = 24) = 2.797 (Table A.1) 
    n1 = [2.7972(0.1558)2]/0.102 = 18.9898 ≈ 19 
 
 Iteration 2. t(0.01/2, 19 – 1 = 18) = 2.878 
    n2 = [2.8782(0.1558)2]/0.102 = 20.1056 ≈ 21 
 
  Iteration 3. t(0.01/2, 21 – 1 = 20) = 2.845 
    n3 = [2.8452(0.1558)2]/0.102 = 19.6471 ≈ 20 
 
  Iteration 4. t(0.01/2, 20 – 1 = 19) = 2.861 
    n4 = [2.8612(0.1558)2]/0.102 = 19.8688 ≈ 20 
 
 The correct sample size is 20, using the t table approach. As you will recall, the z 
table estimates n = 17. 
 The t table method requires three more replicate calculations than did the z 
computation, because the z table is a large-sample table, where n > 120. The t table is 
more accurate and reliable when dealing with smaller samples. 

2.6 (Optional) Equivalency Testing 

All the statistical work that we have done so far is for determining if a significant 
difference exists between a sample and a standard; that is, if a sample and a standard 
are significantly different at the preset α level. If one cannot detect a statistical 
difference using the test, this does not necessarily translate as “equivalent,” because 
testing is against the alternative hypothesis that a difference exists (Fig. 2.9). 
 

Fig. 2.9 Difference testing 

 
 In the case of A, where the standard and sample values are close, the test would 
probably conclude no difference existed between the standard and sample mean 
value A. That is, the H0 hypothesis of no difference would not be rejected. Although 
the test concludes they are not statistically different, they may actually be 
significantly different. The sample size may have been too small to detect a 
significant difference at a given α level. When the x  value is B, the H0 hypothesis of 
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2.6. (Optional) Equivalency Testing
 
no difference would probably be rejected, because the sample mean B is relatively 
far from the standard. From a normal curve perspective, the relationship between 
standard and means A and B can be portrayed, as in Fig. 2.10. 
 The statistical testing we have discussed thus far is designed to evaluate 
differences and is conservative in making difference claims. If A is not within the 
detection limit of the standard, it is simply considered not different from the 
standard, as in Fig. 2.10. However, if one wants to test for equivalence, a different 
statistical approach must be employed. 

 
Fig. 2.10 Normal curve: Standard value versus means A and B 

 
 Equivalence testing, a relatively new family of methods in biostatistics, is 
designed, for example, to determine if the effect of a generic drug, X, is equivalent to 
that of drug Y. That is, are they interchangeable? Unlike difference testing, where 
accepting H0 is considered “not different,” in equivalence testing, H0 is reversed with 
HA, so H0 is the difference hypothesis, and HA is the equivalence one. For example, 
using a two-tail test for difference testing, as we have been doing, the hypothesis is: 
  H0: x  = standard 
  HA: x  ≠ standard 
 But for equivalence testing, there are two H0 hypothesis tests that are compared 
to a preset standard value, ∆. The standard may be x  ± 0.05, or some other range 
value.  
 This provides an upper and lower limit for ∆. The hypotheses are: 
  LH0 : x  < ∆L, where ∆L = lower limit 
 UH0 : x  > ∆U, where ∆U = upper limit 
  HA: ∆L ≤ x  ≤ ∆U 
 In equivalence testing, we are particularly interested in two parameters: 
 
 

  d = difference between the x  value and the standard set value, L; 
  that is, dLx =−  
 There are three different tests in equivalence testing: nonsuperiority, 
noninferiority, and equivalence, which incorporates both the nonsuperiority and the 
noninferiority tests. We will discuss this in greater detail later. 

∆ = set limit of equivalence (any value more extreme is considered different), 
and often, this is considered to be ± 20% of the standard target value of
interest, termed L. 
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 The basic test formulas are: 
 

Nonsuperiority Noninferiority Equivalence 

x
sc s

dt −∆=  ( )
x

ic s
dt ∆−−=  

x
sc s

dt −∆=  and ( )
x

ic s
dt ∆−−=  

 
where L is the target value and ∆ is the target value tolerance. 

( ) Lnxd i −∑= , and nssx =  is the standard error of the x . Tabled values are, as 
before, drawn from the Student’s t table (Table A.1). 
 We will outline this analysis, as always, using the six-step procedure. 
 Step 1. Formulate the hypothesis. 
 

Nonsuperiority Noninferiority 
Equivalence 
(This requires 2 
one-sided tests.) 

H0: d > ∆ 
HA: d ≤ ∆ 

H0: d < ∆ 
HA: d ≥ ∆ 

H0: d > ∆U; H0: d < ∆L 
HA: ∆L ≤d ≤∆U 

If H0 is rejected, 
conclude that the 
sample group is 
nonsuperior to the 
standard (not larger) at 
α. 

If H0 is rejected, 
conclude that the 
sample group is 
noninferior to the 
standard (larger) at α. 

If H0 is rejected, the 
sample group is 
equivalent to the 
standard. 

 
 Step 2. Set α and specify n. 
 Step 3. Write test statistic. 
 

Nonsuperiority Noninferiority Equivalence 

x
sc s

dt −∆=  ( )
x

ic s
dt ∆−−=  

x
sc s

dt −∆=  and 

( )
x

ic s
dt ∆−−=  

tt(α, n – 1) tt(α, n – 1) tt(α, n – 1) 
where where where 
d = x  – L  d = x  – L d = x  – L 
and and and 

nssx = , standard 
error of the x  value 

nssx = , standard 
error of the x  value 

nssx = , standard error of 
the x  value 

n = number of xis n = number of xis n = number of xis 
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2.6. (Optional) Equivalency Testing
 
 
 

Nonsuperiority Noninferiority Equivalence 
If tc tt s > , reject H0 and 
conclude 
nonsuperiority at α. 

If tc tt i > , reject H0 and 
conclude 
noninferiority at α. 

If tc tt s >  and tc tt i > , reject H0 
at α and accept equivalence. 

 
 Step 5. Perform the experiment. 
 Step 6. Make the decision to accept or reject H0. 

2.6.1 Nonsuperiority Test 

Example 2.5 – Testing for Nonsuperiority. Nonsuperiority tests are less common than 
the other two tests (noninferiority and equivalence), but still are used. In a 
microbiological food laboratory, a food mixer is cleaned with an antimicrobial 
dishwashing detergent containing the antibacterial agent, Triclosan. It was found 
that, after several cleanings with the detergent, a Triclosan residual layer had 
accumulated on the stainless steel surfaces and may have inhibited bacterial growth, 
biasing the experiments, as well as contaminating the food. Unfortunately, the 
cleaning standards procedure was written using the Triclosan product, and many 
earlier experiments had been conducted evaluating the procedure. The goal of the 
microbiologist was to design a post-wash rinsing procedure that would assure that 
build-up of Triclosan did not exceed a set limit, L, the standard, plus a 20% of L 
tolerance, ∆. The microbiologist proposed to perform a one-sided nonsuperiority test, 
comparing samples post-wash with the Triclosan dishwashing detergent with 
samples following a wash and rinse with an assortment of surfactants, including 
Triton X-100, and a high pressure dishwasher water spray cycle. To prevent excess 
round-off error, all Triclosan removal values and the ∆ value were multiplied by 100. 
 Step 1. State hypothesis. 
 This is a nonsuperiority test. The Triclosan residual was not expected to diminish 
with repeated washing. 
  H0: d > ∆, the mean residual of Triclosan exceeds the standard allowable
  level 
  HA: d ≤ ∆, the mean residual of Triclosan does not exceed the set limit

 (nonsuperior) 
 Step 2. Set α and n. 
  α = 0.05 and n = 10 replicates 
 Step 3. State the test statistic. 

  
x

sc s
dt −∆=  

 
 
 
 

Step 4. Write out the decision rule. 
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 Step 4. State the acceptance/rejection criterion. 
sc t 0

  tt = tt(α, n – 1) = tt(0.05, 10 – 1 = 9) = 1.833 (Table A.1). 
 Step 5. Perform experiment. 
 The residual amounts of Triclosan contained in the ten samples were each 
multiplied by 100, because the amounts were very small (Table 2.6). The baseline 
standard was determined to be 4.8 = L. The limit was set at 20% of the standard. So 
20% would be considered the limit, ∆, (0.20 × 4.8) = 0.96. 

Table 2.6 Experimental results, Example 2.5 

n x i 
1 5.7 
2 7.1 
3 6.8 
4 3.9 
5 5.5 
6 7.0 
7 8.1 
8 3.5 
9 8.2 
10 7.3 

 
  1.63=∑ ix  and 31.6=x  
 Lxd −=  
 51.1=d  
 8.431.6 −=d  
 
 ( ) ( ) ( ) ( ) 6477.2

110
31.63.731.61.731.67.5

1

2222
2 =

−
−++−+−=

−
∑ −= K

n
xxs i  

  627.1=s  

  515.0
10
627.1 ===

n
ssx   068.1

515.0
51.196.0 −=−=−∆=

x
sc s

dt  

 
 Step 6. Decision. 
 Because sct  = –1.068 >/  tt = 1.833, one cannot reject H0 at α = 0.05. There is 
evidence to conclude the post-wash rinsing method does not prevent the Triclosan 
from building up (standard). Hence, the residual is greater than the baseline. The 
baseline standard and post-wash samples are not equivalent at α = 0.05. 
 
 
 

 If t
(is nonsuperior to) the baseline standard. 

 ≥ t , reject H   at α = 0.05. The Triclosan residual does not exceed 
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2.6. (Optional) Equivalency Testing
 
2.6.2 Confidence Interval Approach to Superiority/Inferiority Testing 

Nonsuperiority Test. A 1 – α, one-sided confidence interval can be constructed to 
determine equivalence – nonsuperiority, in this case – using the formula, d + t(α/2)sx. 
The H0 hypothesis (that the standard and the sample are not equivalent) is rejected if 
∆ > d + tαsx.  
 For the data on triclosan residuals in Example 2.5, a 1 – α (one-sided confidence 
interval upper limit) = d + tαsx. At 1 – 0.05 = 0.95, the nonsuperiority confidence 
interval extends to 1.51 + 1.833 (0.515), or 2.4540. If ∆ ≥ 2.4540, reject H0 at 
α = 0.05; the standard and the sample are equivalent. Because ∆ = 0.96, and it does 
not exceed the upper portion of the 95% confidence interval, H0 cannot be rejected at 
α = 0.05. d is greater than the set tolerance level, ∆. 
 Many find the confidence interval procedure more user-friendly than the 
significance test we performed first. 
 
 Example 2.6 – Testing for Noninferiority. Testing for noninferiority is similar to 
the nonsuperiority test just performed, except the lower tail is used with the H0 being 
the test hypothesis. 
 A microbiology laboratory wishes to prepare antigen samples for use over the 
course of a month. Some of the antigen will be used right away, and some will be 
used later, but all will be used within a month – 30 days. The goal is to determine if 
the antigenicity is stable over the course of a month – that is, does it degrade from 
the initial antigenicity level? Usually, a target value, L, is provided, and here, it is 
0.97, or L = 0.97, or 97% of the theoretical 100% yield of antigen. That is, 
antigenicity of a sample needs to be about 97% of the theoretical yield to be 
consistent. The tolerance value, ∆, is 10%, or 0.10. The actual difference between the 
mean and the set limit, L, for antigenicity cannot exceed –10%.  We are only 
interested in the –10% in this test. We can work this validation experiment with the 
six-step procedure. 
 Step 1. State the hypothesis for this noninferiority test. 
  H0: d < ∆ (that is, d is the difference between the mean of individual values 

  HA: d ≥ ∆ 
 Step 2. Set α and n. 
  The α level was set at α = 0.01, and n = 15. 
 Step 3. State the test statistic. 

  ( )
x

c s
dt i

∆−−=  

 Step 4. Specify the rejection value of H0. 
  tt(α, n – 1) = tt(0.01, 14) = 2.624 (from Table A.1) 
Note: Although this is a lower-tail test, the test is constructed to be an upper-tail one. 

ict 0

 Step 5. Perform the experiment (Table 2.7) 
 

the mean and the target value – in this case, –0.10. 
and the set value, L, and ∆ is the maximum allowable difference between 

 If  > 2.624, reject H  at α = 0.01. The sample is not inferior to the set standard. 
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Table 2.7 Experimental results, Example 2.6 

n x i  n x i 
1 0.72  9 0.78 
2 0.80  10 0.72 
3 0.79  11 0.61 
4 0.63  12 0.59 
5 0.76  13 0.68 
6 0.70  14 0.91 
7 0.62  15 0.83 
8 0.61    

   75.10=∑ x  
  7167.0=∑= nxx  
   97.0=L  
   2533.097.07167.0 −=−=−= Lxd  

( ) ( ) ( ) ( ) 0090.0
14

7167.083.07167.080.07167.072.0
1

2222
2 =−++−+−=

−
∑ −= K

n
xxs i , 

and 0948.0=s . 
  0245.0

15
0948.0 ===

n
ssx  

 ( ) ( ) 2571.6
0245.0

10.02533.0 −=−−−=∆−−=
x

c s
dt  

 Step 6. Because tc = –6.62571 >/  tt = 2.624, one cannot reject H0 at α = 0.01. 
 There is significant evidence to suggest the antigen did degrade over the course 
of 30 days. 
 As stated before, some find the confidence interval approach more user-friendly. 
The 1 – α confidence interval lower level is d – ttsx. The 99% CI lower level is  
–0.2533 – 2.624 (0.0245) = –0.3176.  
 The confidence interval test for noninferiority is, if -∆ ≤ d – ttsx, reject H0 at α. 
-∆ = –0.10 </  d – ttsx = –0.3176, so one cannot reject H0 at α = 0.01. Notice that in 
the data, there was significant variability that inflated the sx value. The range of the xi 
values was 0.91 – 0.59 = 0.32, which the microbiologist should investigate further 
for solutions to maintenance of stability. 
 
 Example 2.7 – Testing for Equivalency (Two One-Sided Tests). Equivalence 
testing, or the two one-sided test schema is, by far, the most common. Here, we are 
interested in whether d is more extreme than each tabled test value, such that H0 is 
rejected and equivalence stated. 
 Unlike the test hypothesis for differences in which a two-tail test is α/2, here, we 
perform two (2) one-tail tests (the nonsuperiority and noninferiority calculations) at 
α. The overall α level is α, not 2α. But when we use the confidence interval 
approach, α is used for each side, for a total of 2α, as in significant-difference testing. 
In other words, at an α = 0.025, both the one-sided tests combined provided an α = 
0.025, not α = 0.05. However, using the confidence interval approach, the same 
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2.6. (Optional) Equivalency Testing
 
strategy as in difference testing is used. If the end α is to be α = 0.05, the tabled value 
to use in the confidence interval is α/2. 
 In a diagnostic microbiology laboratory, blood cell counts are calibrated against a 
standard that provides volumetric cell count in a two-dimensional computer array. 
The tolerance limit, ∆, is ± 0.50 log10 cells on a standard of 106 cells/mL. The 
microbiologist wants to know if the calibration results at the end of the day are 
equivalent to the standard, L (set level), at the beginning of the day, or log10 106 = 6. 
 0 A
  H0: d > ∆U (difference between the sample mean and set level exceeds the 

upper tolerance limit) 
  H0: d < ∆L (difference between the sample mean and set level is less than
  the lower tolerance limit) 
  HA: ∆L ≤ d ≤ ∆U (the difference between the sample mean and set level 
 does not exceed the lower or upper tolerance limits) 
 Step 2. Set α and n. 
  α = 0.05, and n = 10 samples 
 Step 3. State the test statistic. 
  There are two (2) one-tail tests. 

  
x

sc s
dt −∆=  and ( )

x
ic s

dt ∆−−=  

 Step 4. Write the decision rule. 
  If ( ) ( ) 833.19;05.01; ==≥ − ttt ntsc α  (Table A.1), and 
  If ( ) ( ) 833.19;05.01; ==≥ − ttt ntic α , reject H0 at α = 0.05. 
 Step 5. Perform the experiment (Table 2.8). 

Table 2.8 Experimental results, Example 2.7 

n x i  
1 5.8  
2 6.2  
3 7.6  
4 6.5  
5 6.8  
6 7.3  
7 6.9  
8 6.7  
9 6.3  
10 7.1  

   2.67=∑ x  
   72.6=∑= nxx  
   0.6=L log10 target value 
   72.00.672.6 ===−= Lxd  
   72.0=d  

 
  

Step 1. State the hypotheses; there are three: two for H  and one for H . 
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  ( ) ( ) ( ) ( ) 2929.0
9

72.61.772.62.672.68.5
1

2222
2 =−++−+−=

−
∑ −= K

n
xxs i  

  5412.0=s  

 1711.0==
n
ssx  

  2858.1
1711.0

72.05.0 −=−=−∆=
x

sc s
dt  

 ( ) ( ) 1303.7
1711.0

5.072.0 =−−=∆−−=
x

ic s
dt  

 
 Step 6. Make the decision. 
 Although 833.11303.7 >=ict , 833.12858.1 >/−=sct , so one cannot reject H0 at  
α = 0.05. The standard, L, and the mean of samples are not the same (equivalent)  
at the end of the day. 
 The confidence interval approach uses the interval d ± t(α/2; n–1)sx, where α = 0.10 
and α/2 = 0.05. 
  Upper: 0.72 + 1.833 (0.1711) = 1.0336 
  Lower: 0.72 – 1.833 (0.1711) = 0.4064 

 
Fig. 2.11 90% Confidence interval on d = 0.72 

 You now have a strong background in one-sample testing to a standard value. In 
Chapter 3, we will carry this process to comparing two samples to one another. 

2. One-Sample Tests 

 If ∆ falls outside the d confidence interval, H0 is rejected at α = 0.10. d = 0.4064 
to 1.0336. Because ∆ = 0.5 is contained in the interval, one cannot reject H0 at α = 0.10 
(Fig. 2.11). 
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Chapter 3 
Two-Sample Statistical Tests, Normal Distribution 

The two-sample comparative test can be considered the “workhorse” of microbial 
biostatistics. Here, one is evaluating two different sample groups such as treatments, 
methods, procedures, or product formulations, for example, to determine if the 
means of data differ, or if the mean for one is smaller or larger than that for the other. 
No matter what the test hypothesis, two sample sets are compared. 
 

Key Point 
 
There are three basic categories of test designs for the two-sample tests: 
     1.  Two-Sample Independent t-Test. This test assumes the variances of the data from the 
two sample groups are independent and, therefore, one does not confirm that the two 
samples have the same variances, s2. Hence, they are considered different, 2

2
2

1 σσ ≠ . So 
what? When the variances are unequal, greater sample sizes are required than if they were 
equal, to detect significant statistical differences. However, I am not talking about a small 
difference, but one where one variance is two or three times larger than the other. If one 
wants to be extremely conservative in rejecting H0 (saying the two samples differ when 
they do not), and the sample variances are unequal ( )0.12

2
2
1 ≠ss , use this independent test. 

     2. Two-Sample Pooled Variance t-Test (Pooled t-Test). The variances of the two sample 
groups are considered equal ( )0.12

2
2
1 =ss . This is a very reasonable assumption when, for 

example, microbiologists are exposing the same microbial species to different 
antimicrobials, or for compound comparisons, such as media types and different use 
methods. Fortunately, the pooled t-test is also robust to variance differences ( )0.12

2
2
1 ≠ss . 

This test is more powerful and can detect true differences between sample groups with 
smaller sample sizes than can the independent t-test, because the variances are combined. 
     3. Matched Pair t-Test. This test is extremely valuable and powerful. It is based on 
blocking (matching) sample pairs that are very similar. That is, the members of Group A 
and Group B are assigned according to common or similar attributes. For example, Groups 
A and B may represent a pre- and post-treatment reading on the same experimental unit. 
Hence, each pre-treatment sample will be compared to itself at the post-treatment. 
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3.1 Requirements of all t Tests 

The requirements of all three versions of the two-sample t-test are: 

 1. Sample collection is by random selection of both treatments; that is, if one has 
two treatments, A and B, then from a common pool, the assignments are randomly 
made. For example, suppose lawns of Escherichia coli on agar plates are to be 
exposed to two drugs, A and B, impregnated on discs, and the zones of inhibition are 
to be measured and compared. Here, the inoculated plates would be randomized to 
one of two treatments, A or B (if, for some reason, both treatment discs A and B 
could not be placed on the same agar plate). 
 2. Samples from both groups are tested simultaneously. That is, Group A is not 
run this week and Group B next week. Depending on the randomization schema, 
runs of A and B are mixed in order to avoid any “time” effect.  
 3. The sampled populations are normally distributed.  
Now, let us investigate each version of the Student’s t test in some detail. 

Equivalent,  

In this statistic, the samples acquired from each group are assumed independent of 
each other. That is, what affects one group does not affect the other. The variances, 
s2, as well as the standard deviations, s, are assumed different, or at least one does 
not claim they are the same. The test statistic is: 

 

B

B

A

A

BA
c

n
s

n
s

xxt
22

+

−= , with 221 −+ nn  degrees of freedom. 

where BA xx ,  are the means of sample groups A and B, 22, BA ss  are the variances of 
samples groups A and B, and nA, nB are the sample sizes of sample groups A and B. 
 Three tests for significance can be conducted: lower-tail, upper-tail, and two-tail. 
 

Key Point 
 

The six-step procedure makes the test strategy logical to follow. 
 

 
 Step 1. Construct the hypothesis test. 

Lower-Tail Test* Upper-Tail Test Two-Tail Test 

H0: A ≥ B 
HA: A < B 

H0: A ≤ B 
HA: A > B 

H0: A = B 
HA: A ≠ B 

                                                 
* Remember, the terms, lower-, upper-, and two-tail refer to the test hypothesis, HA. 

3.1.1 Two-Sample Independent t Test: Variances are not Assumed 
σ1

2 ≠ σ2 2
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 Step 2. Set α and specify sample sizes. Try to keep the sample sizes equal, 
because these values play a role in determining the critical acceptance/rejection 
values in the t tables. 

 Step 3. State the test statistic. 

B

B

A

A

BA
c

n
s

n
s

xxt
22

+

−=  

where Ax  and Bx  = 
n
xi∑  for each group and s2 = ( )

1

2

−
∑ −

n
xx  for each group. 

 Step 4. Write the decision rule. 
 

*

   
c t 0 c t 0 c t c t 0

at α, or more simply stated, 
if |tc| > |tt|, reject H0 at α. 
(The meaning of |x| is “the 
absolute value of x.”) 

 Step 5. Perform the experiment and collect and analyze the data. 
 Step 6. Make the decision based on the calculated test statistic. 
 
 Example 3.1. A microbiologist wants to compare Drugs A and B in terms of their 
antimicrobial properties versus a clinical isolate (i.e., isolated from a medical patient) 
of Escherichia coli. The E. coli was subcultured and then inoculated as a lawn onto 
Mueller-Hinton agar plates. A disc impregnated with either Drug A or Drug B was 
then placed onto the agar in the middle of the plate, and plates were incubated at 35 
± 2°C for 24 h. The width of the zone (at its widest) in which growth of E. coli was 
prevented was measured on ten plates exposed to each drug. Let’s work this through, 
using all three possible hypotheses. 
 
 Step 1. Specify the test hypothesis. 

Lower-Tail Test  Upper-Tail Test Two-Tail Test 

H0: A ≥ B 
HA: A < B 

H0: A ≤ B 
HA: A > B 

H0: A = B 
HA: A ≠ B 

Drug A produces a smaller 
zone of inhibition than does 
Drug B. 

Drug A produces a larger 
zone of inhibition than does 
Drug B. 

The zones of inhibition 
produced by Drugs A and B 
are not the same. 
 

                                                 * Remember, the terms, lower-, upper-, and two-tail refer to the test hypothesis, HA. 

3.1. Requirements of all t Tests

If t  < t , reject H  at α. If t  > t , reject H  at α. If t  < t  or t  > t , reject H

Lower-Tail Test  Upper-Tail Test  Two-Tail Test 

*
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 Step 2. Set α and nA and nB. Let us use α = 0.05, and nA = nB = 10. 
 Step 3. State the decision rule. 
 

Lower-Tail Test Upper-Tail Test Two-Tail Test 
( )2; −+− BnAntt α  
( )18;05.0−tt

Using the Student’s t table 
(Table A.1), 

734.1−=tt  

( )2; −+ BnAntt α  
( )18,05.0tt

Using the Student’s t table 
(Table A.1), 

734.1=tt  

( )2;2 −+ BnAntt α  
( )18;205.0tt  

(Table A.1), 
( ) 101.218,025.0 ±=tt  

   
If tc < –1.734, reject H0 at 
α = 0.05. 

c 0
= 0.05. 

If tc < –2.101 or tc > 2.101, 
reject H0 at α = 0.05. 

 
 Step 4. Choose the test statistic. 

 

B

B

A

A

BA
c

n
s

n
s

xxt
22

+

−=  (The same formula is used for each of the hypothesis tests.) 

 Step 5. Perform the experiment. Results are presented in Table 3.1. 
 

Table 3.1 Zones of inhibition in millimeters, Example 3.1 
 

n Drug A Drug B 
1 10.5 11.2 
2  7.8 10.3 
3  9.3  9.2 
4  8.7  9.7 
5 10.2  8.9 
6  8.9 10.7 
7  7.4  9.9 
8  9.3 10.1 
9  8.7  7.8 
10  7.9  8.9 

 

87.8
10

9.77.88.75.10 =++++=∑= L
n
xx i

A  

( ) ( ) ( ) ( ) ( ) 01.1
110

87.89.787.87.887.88.787.85.10
1

22222
2 =

−
−+−++−+−=

−
∑ −= L

n
xxs Ai

A

67.9
10

9.88.73.102.11 =++++=∑= L
n
xx i

B  

If t  > 1.734, reject H  at 
α 

Using the Student’s t table 
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( ) ( ) ( ) ( ) ( ) 00.1

110
67.99.867.98.767.93.1067.92.11

1

22222
2 =

−
−+−++−+−=

−
∑ −= L

n
xxs Bi

B

78.17844.1

10
00.1

10
01.1

67.987.8 −≈−=
+

−=ct  

 
 Step 6. Make the decision. 
 
Lower-Tail Upper-Tail Two-Tail 
Because –1.78 < –1.734, 
reject H0 at α = 0.05; Drug A 
has smaller zones of 
inhibition than does Drug B. 

Because –1.78 >/  1.734, one 
cannot reject H0 at α = 0.05; 
Drug A does not have larger 
zones of inhibition than does 
Drug B. 

Because –1.78 </  –2.101, 
and –1.78 >/  2.101, one 
cannot reject H0 at α = 0.05; 
Drug A and Drug B are not 
significantly different in 
zones of inhibition. 
 

Note that the lower-tail test rejected H0, but the two-tail test did not. This is because 
the two-tail test is less sensitive to directions of difference. It must account for both a 
lower and upper critical value. If you can, use a single-tail test for greater power in 
your analysis. 

Most times, the variances of two sampled populations will be equivalent, or close 
enough to use a pooled variance statistic; that is, the two variances are combined into 
a common one. A two-sample pooled t-test is statistically more powerful than is an 
independent variance, two-sample test, given all else is the same. 

 
pooleds

xxt BA
c

−=  

where Ax  and 
n
xx i

B
∑= , and ( ) ( )

BABA

BBAA

nnnn
snsns 11

2
11 22

pooled +
−+
−+−= ,  

where 2
As  and ( )

1

2
2

−
∑ −=

n
xxsB  for each sample group. 

 The same three hypotheses can be evaluated, using the six-step procedure. 

 Step 1. Formulate the hypothesis. 

Lower-Tail Upper-Tail Two-Tail 
H0: A ≥ B 
HA: A < B 

H0: A ≤ B 
HA: A > B 

H0: A = B 
HA: A ≠ B 

 Step 2. Set α and the sample size for nA and nB. 

Lower-Tail Test Upper-Tail Test Two-Tail Test 

–α α –α/2 and α/2 

3.1. Requirements of all t Tests

σ1
2 2 σ  3.1.2 Two-Sample Pooled t Test: Variances are Equivalent, = 2
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 Step 3. Select the test statistic. 

 
pooleds

xxt BA
C

−=  

 Step 4. State the acceptance/rejection criteria. 

Lower-Tail Test Upper-Tail Test Two-Tail Test 

If ( )2, −+−< BnAntc tt α , reject H0 
at α = 0.05. 

If ( )2, −+> BnAntc tt α , reject H0 
at α = 0.05. 

If ( )2,2 −+−< BnAntc tt α  or 

( )2,2 −+> BnAntc tt α , reject H0 at 
α = 0.05. 

 Step 5. Perform experiment. 
 Step 6. Make the decision. 

 Let’s analyze the data from Example 3.1, to see if anything changes from what 
we found when assuming unequal sample variances. 

 Step 1. Formulate the hypothesis. 

Lower-Tail Upper-Tail Two-Tail 

H0: A ≥ B 
HA: A < B 

H0: A ≤ B 
HA: A > B 

H0: A = B 
HA: A ≠ B 

Zones of inhibition are 
smaller for Drug A than for 
Drug B. 

Zones of inhibition are larger 
for Drug A than for Drug B. 

Zones of inhibition for 
Drug A and Drug B are 
different. 

 Step 2. Set α and sample size, n. α = 0.05 and n1 = n2 = 10 
 Step 3. Write the test statistic: 

pooled

BA
c s

xxt −= . 

 Step 4. State the decision rule. 

Lower-Tail Test Upper-Tail Test Two-Tail Test 
( )2; −+− BnAntt α  
( )18;05.0−tt  

Using the Student’s t table 
(Table A.1) 

734.1−=tt  

( )2; −+ BnAntt α  
( )18;05.0tt  

Using the Student’s t table 
(Table A.1) 

734.1=tt  

( )2;2 −+ BnAntt α     ( )18;205.0tt  
Using the Student’s t table 
(Table A.1) 

( ) 101.218;025.0 ±=tt  
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If tc < –1.734, reject H0 at 
α

 
= 0.05. 

If tc > 1.734, reject H0 at 
α

 
= 0.05. 

If tc < –2.101 or tc > 2.101, 
reject H0 at α = 0.05. 

 

 Step 5. Perform the experiment and calculate the test statistic. Results have been 
presented already in Table 3.1 (reproduced here for convenience). 

Table 3.1 Zones of inhibition in millimeters, Example 3.1 
 

n Drug A Drug B 
1 10.5 11.2 
2  7.8 10.3 
3  9.3  9.2 
4  8.7  9.7 
5 10.2  8.9 
6  8.9 10.7 
7  7.4  9.9 
8  9.3 10.1 
9  8.7  7.8 

10  7.9  8.9 

87.8
10

9.77.88.75.10 =++++=∑= L
n
xx i

A  

( ) ( ) ( ) ( ) ( ) 01.1
110

87.89.787.87.887.88.787.85.10
1

22222
2 =

−
−+−++−+−=

−
∑ −= L

n
xxs Ai

A

67.9
10

9.88.73.102.11 =++++=∑= L
n
xx i

B  

( ) ( ) ( ) ( ) ( ) 00.1
110

67.99.867.98.767.93.1067.92.11
1

22222
2 =

−
−+−++−+−=

−
∑ −= L

n
xxs Bi

B

( ) ( )
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BBAA
pooled nnnn

snsns 11
2

11 22

+
−+
−+−=  

( ) ( ) 4483.0
10
1

10
1

21010
00.1901.19 =+

−+
+=pooleds  

78.1
4483.0

67.987.8 −=−=−=
pooled

BA
c s

xxt  

 Step 6. Make the decision. 

Lower-Tail Upper-Tail Two-Tail 
tc = –1.78 < tt = –1.74; reject 
H0 at α = 0.05. 

tc = –1.78 >/  tt = 1.74; one 
cannot reject H0 at α = 0.05. 

|tc = 1.78| >/  |tt = 2.01|; one 
cannot reject H0 at α = 0.05. 

3.1. Requirements of all t Tests
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3.1.3 Paired t Test 

A number of experiments lend themselves to pairing, where the variability between 
the two groups contrasted can be minimized. Consider an experimental design to 
measure the microbial colony-forming counts at the human abdominal site after 
prepping the skin with two antiseptic formulations. The standard two-sample t-test 
would require sampling subjects from a population size, N, and from that, sample the 
nA and nB subgroups, which are randomly assigned to one of the two formulations. 
Suppose 20 subjects were selected, and 10 were randomly assigned to Antiseptic A 
and 10 to Antiseptic B. Both males and females, having different ages, weights, 
heights, health status, and other components, would be allowed to participate. The 
statistical variances, more than likely, would be relatively large, because of how such 
inter-subject differences contribute to differences in individual skin microorganisms. 
The greater the statistical variability (the variance), the greater the number of 
subjects necessary to detect any significant difference between the products. Figure 
3.1 provides an example of a completely randomized design in which the average 
microbial reductions from Group 1 are compared to those from Group 2. 

 
Fig. 3.1 Completely randomized design 

 
 In a matched-pair design, each subject would receive both treatments; that is, 
statistically speaking, each subject would constitute a block; only the data points in 
each block are compared. In the abdominal evaluation, each subject receives both 
treatments. The areas of skin to each side of the umbilicus are randomly assigned for 
treatment, one with each of the two test products. The differences between 
treatments are then measured within each subject, not between subjects. Figure 3.2 
portrays the kind of results one would see from this study design. The many sources 
of variability that exist between each subject can be ignored, in that only the 
differences within the block (an individual subject’s abdomen) are compared, 
making the design more powerful than a completely randomized one. 
 Other examples of a similar kind would be experiments using the same culture 
plate in a Kirby-Bauer test to compare two antibiotics – each plate is challenged with 
both antibiotics – or using subjects paired based on similarities in weight, sex, blood 
pressure, liver functions, etc. Whenever possible, a matched-pair test is desirable. 
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Fig. 3.2 Paired design (the variance in this case is not between subjects but within each 
subject) 

The formula used for statistical analysis is 
n

s
d

t paired
c = , where ( )

n
d

n
xxd BA ∑=∑ −= , 

or the average difference between pairs within a block, and ( )
1

2

−
∑ −=

n
dds i

paired , or 
the standard deviation of the differences. 
 
 Six-Step Procedure. The paired test can be configured as a lower-, upper-, or two-
tail test, using the six-step procedure. 
 
 Step 1. State the hypothesis.  
 

Lower-Tail Test Upper-Tail Test Two-Tail Test 

H0: A ≥ B 
HA: A < B 

H0: A ≤ B 
HA: A > B 

H0: A = B 
HA: A ≠ B 

 Step 2. Set α level and nA and nB. In matched-pair designs, the samples sizes, nA 
and nB must be equal, nA = nB. 
 Step 3. Write out the test statistic. 

  
n

s
d

t d
c =  
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 Step 4. Write out the acceptance/rejection decision rule. 

Lower-Tail Test Upper-Tail Test Two-Tail Test 

  
If tc < t(–α; n–1), reject H0 at 
α = 0.05. 

If tc > t(α; n–1), reject H0 at 
α

 
= 0.05. 

If |tc| > |t(α/2; n-1)|, reject H0 at 
α

 
= 0.05. 

 
Note: The tabled value is dependent on n being the number of pairs (blocks), not test 
sites. We lose degrees of freedom in the paired test, so if the pairing does not reduce 
variability, one should not use the paired approach. 
 
 Step 5. Perform the experiment. 

decision rule in Step 4. 
 
 Example 3.2. A microbiologist wants to compare two media preparations for their 
effects on determining the resistance of Bacillus subtilis (B. atrophaeus) spores to 
sodium hypochlorite. The microbiologist wants the experimental conditions to be 
equivalent in all areas, except the growth medium. The two media to be used are soil 
extract nutrient agar made using reagent grade water (control) and the same medium 
made using an on-site source of deionized water. The objective is to determine if the 
survival of the bacteria following exposure to the sodium hypochlorite is affected by 
the medium used to germinate and grow vegetative bacteria from the spores, thereby 
indicating an inflated sporicidal efficacy. Variables that must be controlled include 

incubator, the same microbiologist, and the same methods of treatment. Because 
sodium hypochlorite (bleach) is an effective sporicidal agent, a diluted form will be 
used (300 ppm) for a 5-min exposure of the spores. The initial spore population will 
be at least 1.0 × 105 colony-forming units per milliliter (CFU/mL), and all 
computations will be performed on data linearized by log10 transformation. The 
microbiologist wants to know if the test medium (test variable – deionized water vs. 
on-site water) affects assessment of spore resistance to sodium hypochlorite. The 
analysis of the data from this experiment can be easily set into the six-step 
procedure.  
 Step 1. First, write out the test (alternative) hypothesis, then the H0, or null 
hypothesis. 
 The concern is that medium prepared using the on-site water may cause spores to 
appear more sensitive to bleach than does the control medium made using reagent 
grade deionized water. If this is so, following the 300 ppm sodium hypochlorite 
exposure, counts of bacterial colonies on the test medium will be lower than counts 
from the standard medium. Let A = test medium (on-site water) and B = control 

the same commercial powdered nutrient agar, the same lot of Petri dishes, the same 
Bacillus subtilis spores being taken from a single inoculum suspension and use of 

 Step 6. Make the decision based on the outcome of the experiment and the 
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medium (reagent grade water). The test hypothesis, then, is HA: A < B. Hence, a 
lower-tail test is used. 
  0H : BA ≥  
  AH : BA<  
 Step 2. Set α and n. The microbiologist wants to have at least 90% confidence 
that a type I error is not committed; that is, stating that a true difference exists 
between the two post-treatment colony counts when one does not. Hence, 1 – 0.90 = 
0.10, and α = 0.10. The sample replicates are nine (n = 9), plated in duplicate. The 
duplicate plate counts of colonies from each medium formulation will be averaged as 
a single xi value. 
 Step 3. Select the test statistic. Here, the statistic is ( ) nsdt dc = . 

t- tabled value will be used (Fig. 3.3). t(–α; n – 1) = t(–0.10; 8) = –1.397 (Table A.1). 

 
Fig. 3.3 Step 4, Example 3.2 

 
 If t-calculated < t-tabled (–1.397), reject the H0 hypothesis at α = 0.10. Medium 
prepared with the on-site water (A) indicates that spores are more sensitive to sodium 
hypochlorite than does medium made with the reagent-grade water (B). 
 Step 5. Perform the experiment. The microbiologist dispensed 1.0 mL aliquots of 
a 107–108 spore/mL suspension into a pair of tubes (1 test, 1 control), vortexed for 15 
s, and then added the sodium hypochlorite for a 5-min exposure, followed by 
neutralization. Serial dilutions of the spore suspension were then transferred to media 

were counted, and the raw count data were log10 linearized. The collected data are 
presented in Table 3.2. 
 

Table 3.2 Collected data for Example 3.3 
 

Block pair (n) Medium A Medium B d = xA – xB 
1 3.8 4.1 –0.3 
2 4.7 4.3 0.4 
3 5.2 4.9 0.3 
4 4.7 4.7 0.0 
5 3.9 3.8 0.1 
6 3.3 3.2 0.1 
7 3.6 3.4 0.2 
8 3.2 3.0 0.2 
9 3.3 3.1 0.2 

   Σd = 1.2 

3.1. Requirements of all t Tests

 Step 4. Write out the decision rule. Because this is a lower-tail test, a negative 

preparations A and B for incubation at 35 ± 2°C for 24–48 h. The bacterial colonies 
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 Step 6. Make the decision. Because tc = 0.222 </  tt = –1.397, one cannot reject H0 
at α = 0.10. There is no substantial evidence to support the hypothesis that using the 
on-site water (A group) in the growth medium results in the appearance of 
significantly more sensitive spores than does the control medium. 

3.1.4 Sample Size Determination 

In microbiological experiments, it is very easy to bias the statistical results. Although 
lack of randomization is probably the greatest contributor to biased studies, so is an 
inadequate sample size. In standard hypothesis testing, what primarily is evaluated is 
the validity of the alternative hypothesis. That is, is there sufficient evidence to claim 
that a significant difference between the two groups exists? The rejection of an 
alternative hypothesis (HA) does not translate to acceptance of the null hypothesis 
(H0). Yet, in many research papers, this is exactly what is claimed, at least by 
inference. The more appropriate statement is that one cannot reject H0 at the set α 
level, a subtle difference in meaning.  
 For example, in comparing 5-min exposures of bacterial spores to a chemical 
disinfectant at full strength and at x strength using a sample size of four in each 
group, the microbiologist may claim no difference exists in the sporicidal activity of 
the two concentrations. But unknown to the microbiologist was that, given the 1.0 
log10 variability in the study (s = 1.0), it was under-powered to detect a true and 
significant difference. So, before conducting a study, it is necessary to select a 
sample size that, considering the variability of the data, will actually support a 
statistical conclusion. 
 Selection of an appropriate statistical sample size depends upon four indices: 
1) σ, 2) α, 3) β, and 4) δ. δ is estimated by s, the standard deviation of the data and is 
computed differently for independent, pooled, and paired tests, as we have already 
seen. The standard deviation is a measure of precision. The larger the sample size, 
the greater the precision, i.e., the smaller the s value. The alpha, or α value is the 
acceptance level for Type I error – stating a difference is significant, when it is not – 
and is set by the researcher. The level of α is often, by convention, specified as 0.05. 
This means that, over the long haul, a Type I error will be committed 5% of the time, 
or 5 out of 100 repetitions of the experiment. The beta, or β value is the acceptance 
level for Type II error – stating that data sets are not significantly different, when 
they actually are. The value of β also is set by the researcher. It is important to note 
that 1 – β is the “Power of the Statistic.” Beta error is often set at 0.20. Hence, 20% 
of the time, a true difference between data sets will not be detected. The power of the 
statistic is 0.80. Delta (δ) is the specified detection level of the statistic used; that is, 
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the ability of the statistical model to detect differences between data sets. δ is 
estimated by the minimum critical value needed to detect the magnitude of 
difference between two experimental groups that will be considered significant. It is 
set by the researcher. 
 A microbiologist may need to detect 0.5 log10 differences between treatments to 
call them significantly different from one another. In other cases, d may be set lower 
or higher, as required. If it is set at 0.5 log10, then, given adequate sample sizes, the 
statistic will detect differences between data sets that are greater than or equal to 0.5 
log10. Generally, before the experiment is conducted, these four indices are used to 
compute a sample size value.  
 
3.1.4.1 Sample Size Determination, Independent Two-Sample  
t Test, 

The equation is ( )( )
2

2
2

2
2

2
1

d
zzssn βα ++≥ , where n = minimum sample size of each 

group compared, ( ) ( )111
2
1 −∑ −= nxxs , ( ) ( )122

2
2 −∑ −= nxxs , zα/2 = normal tabled 

value (Table A.2) of α/2, zβ = normal tabled value (Table A.2) of β, and d = the 
specified detection level (not to be confused with “d,” as used to represent the 
difference between pairs in a matched-pair t-test). 
 Suppose 2

1s  = 4.3, 2
2s  = 7.1, d = 2.0, α = 0.05, and β = 0.20. Then zα/2 = 0.5 –

 0.025 = 0.4750 (see page 54 for the normal z table computations), which covers the 
area 1 – α/2, when α = 0.05. The value, 0.4750, in Table A.2 corresponds to 1.96, so 
zα/2 = 1.96. zβ = 0.5 – 0.20 = 0.3, which corresponds to 0.842, for β = 0.20. d = 2.0 
specifies a detection level of 2.0 log10.  

 ( )( ) 38.22
2

842.096.11.73.4
2

2

=++≥n  

 Hence, a sample size of at least 23 in each test group is required, a total of 46 
subjects at α = 0.05, β = 0.20, and d = 2.0. 
 Once the experiment has been completed with the projected sample, it is a good 
idea to recheck the sample size, once one knows what 2

1s  and 2
2s  actually are. It is 

the variance component of the predicted sample size equation that generally is found 
to differ, post hoc. To solve for the detection level, one calculates: 

 ( )( )
n

zzssd
2

2
2
2

2
1 βα ++=  

 It is very valuable to do this check, particularly if no significant statistical 
difference is reported between the data sets. One wants to be assured that, if a 
significant difference actually existed, the statistic has the power to catch it. For 
example, suppose 2

1s  + 2
2s  were found to actually be 6.2 and 7.9, respectively, after 

the experiment was concluded. 

σ1
2 ≠ σ2 

3.1. Requirements of all t Tests

2
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Key Point 

Using the Normal z Distribution Table 
 
The z Table (Table A.2) is a little more difficult to use than the Student’s t Table (Table 
A.1). But by following these instructions, the process can be easy. 
     1. The z distribution is symmetric with an area of 1.0. Hence, by convention, only one-

expressing 0=x , s = 1. The normalizing calculation is 

carries a positive sign and the lower-tail, a negative one. To determine the z tabled value at 

found on the left-most column, and the last or third significant digit in the upper-most row. 
 
Example: Find the z tabled value for α = 0.05. 
 

     Step 1. 0.5 – 0.05 = 0.450 
     Step 2. Go into the z table matrix and find the value 0.450, or the one closest to it. That 
value is 0.4495. 
     Step 3. Move your finger horizontally to the left-most z value (1.6) and vertically from 
0.4495 to the upper-most row to find 0.04. This critical value is 1.64, the z-tabled value, or 
zt. 

 

If a lower-tail test is used, the same procedure (upper-tail test) is done but a negative sign is 
placed in front of the z value, in this case, –1.64.  

 

Instead of subtracting α from 0.5, subtract α/2 from 0.5. This is because both the upper- and 
lower-table regions need to be considered. Then, the same steps are repeated. 
     Step 1. 0.05 ÷ 2 = 0.025 
     Step 2. 0.5 – 0.025 = 0.475 
     Step 3. Find the 0.475 value in the z table matrix, which is exactly 0.475. 
    Step 4. Move your finger horizontally from 0.475 to the left-most column and find the 
value, which is 1.9. Next, move your finger vertically up from 0.475 to the top-most row 
and find that value, which is 0.06. Combining those values, 1.9 + 0.06, gives the value 
1.96. Because this is a two-tail test, there are two critical zt values, –1.96 and 1.96. 
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z = (x − µ σ .)  

Upper-Tail Test: 

     2. Upper-tail and lower-tail critical values are found the same way, except the upper-tail 

half of it is used, which covers 0.5 area. The values in the z table are normalized values 

Lower-Tail Test: 

Two-Tail Test: 

α, subtract α from 0.5 and find that value in the z table. The first two significant digits are 
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3.2. Other Topics
 
 ( )( ) 19.223842.096.19.72.6 2 =++=d  detection level, which is pretty close to 
our set level of 2.0 log10. To get a detection level of 2.0 with 2

1s  = 6.2 and 2
2s  = 7.9 

would require 28 in each test group. ( )( ) 2868.27
2

842.096.19.72.6
2

2

≈=++≥n . 

 Now, the big question is whether “0.19 log10” is worth the extra subjects. One 
could have concluded that no difference between groups existed, when really, the 
sample size of 23 was inadequate to detecting a significant difference such as 2.10 log10. 
 
3.1.4.2 Sample Size Determination: Pooled Variance t Test, 

( )
2

2
2

2

d
zzsn pooled βα +≥ 2

pooleds ,  is 

used in place of 2
2

2
1 ss + . 

3.1.4.3 Sample Size Determination, Two-Sample Matched-Pair Test 

( )
2

2
2

2

d
ZZsn d βα +≥ . Use the same formula, but use the paired variance ( 2

ds ) instead of 

the independent or pooled variance. 

3.2 Other Topics 

3.2.1 Proportions 

Some times, microbiologists deal with qualitative data that take the form of one of 
two values, 1 or 0. They are used to represent binary outcomes and are termed 
nominal data. The numbers themselves have no arithmetic meaning. The binary 
values may represent success/failure, growth/no growth, sterile/nonsterile, or 
positive/negative, for example. These qualitative values can be quantitatively 
represented as “proportions.” Say there are 100 trials, of which five are successes 
and 95 are failures. Let s = proportion of successes = number of successes/total trials 
= 5/100 = 0.05, and the failure proportion equals 1 – 0.05 = 0.95. These converted 
proportion values may then be used in two-sample statistical tests. 
 Testing proportions requires a larger sample size than do quantitative studies, all 
other things held constant, so the sample size should be as large as possible, ≥ 30. 
Because proportions provide for less power, statistically, than do actual 
measurements, we will apply only a single kind of two-sample test, and not have 
options for nonequal variances, equal variances, or matched pairs. The population 
proportion parameter is π , which is estimated by P. The population standard 

deviation is ( ) ( )
B

BB

A

AA

nn
ππππσ −+−=∆

11 . It is estimated by the sample standard 

. Use the same formula, except the pooled variance, 

σ1
2  σ2 = 2
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 Let us perform the two-sample comparison using the six-step procedure. 
 
 Example 3.3. A microbiologist wants to compare two types of fluid medium 
(egg/meat medium and garden soil extract medium) to see if they produce different 
growth results for Bacillus subtilus survivors post-exposure of the spores to a 121°C 
steam-sterilization cycle – that is, are the surviving populations significantly 
different. This is a two-tail test. For instructive purposes, I will also compare the 
results using upper- and lower-tail tests. Thirty (30) test tubes of each medium will 
be used. A is the egg/meat medium, and B is the garden soil extract. 
 Step 1. Formulate the hypothesis. Let P be the proportion of successes. Here, 
tubes with no growth are designed as 0. Note that, often, success is defined as 
growth, or a 1. It does not matter from a statistical perspective, as long as one is clear 
about the assignment value of success and failure. 
 

H0: PA ≥ PB 
HA: PA < PB 

H0: PA ≤ PB 
HA: PA > PB 

H0: PA = PB 
HA: PA ≠  PB 

 
 Step 2. Set α and nA and nB. In this pilot, we will set α = 0.10 and nA = nB = 30. 
 Step 3. Choose the test statistic. ( ) BAccBAc nnPP +−1 . 
 Step 4. State the decision rule. 
 
Lower-Tail Test Upper-Tail Test Two-Tail Test 

  
Find t tabled value in Table 
A.1 

( )2; −+−= BnAnt tt α  
 ( ) 303.158;10.0 −== −ttt  
If tc < –1.303, reject H0 at 
α = 0.10. 

Find t tabled value in Table 
A.1 

( )2; −+= BnAnt tt α  

( ) 303.158;10.0 == ttt  
If tc > 1.303, reject H0 at 
α = 0.10. 

Find t tabled value in Table 
A.1 

( )2;2 −+= BnAnt tt α  

( ) 684.158;025.0 ±== ttt  
(because this is a two-tail 
test) 
If tc < –1.684 or tc > 1.684, 
reject H0 at α = 0.10. 

 

Lower-Tail Upper-Tail Two-Tail 
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t = (P − P ) ( )
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3.2. Other Topics
 
 Step 5. Perform the experiment. The researcher randomly selected 30 Group A 
and 30 Group B tubes, inoculated them with Bacillus subtilis spores, and placed 
them in the autoclave for 15 min at 121°C. The tubes were then removed and read 
after 24 h of incubation for growth (1) or no growth (0). Those tubes that read no 
growth were re-incubated and re-read everyday for seven consecutive days. The 
results are shown in Table 3.3. 
 

Table 3.3 Growth results, Example 3.3 

Group A Group B 
0 0 0 1 1 0 0 1 0 0 
0 1 0 1 0 1 0 0 1 0 
0 1 1 0 1 0 0 1 0 1 
1 1 0 0 1 0 0 0 1 0 
0 0 1 0 1 0 1 0 1 0 
0 1 1 0 1 0 0 0 1 0 
nA = 30 

 
nB = 30 

 

50.0
30
15

30
s0 ofnumber ===AP  70.0

30
21

30
s0 ofnumber ===BP  

     ( ) ( ) 60.0
60
36

3030
70.03050.030 ==

+
+=

+
+=

BA

BBAA
c nn

PnPnP  

     
( ) ( )

16.3

3030
6.016.0

7.05.0
1

−=

+
−
−=

+
−
−=

BA

cc

BA
c

nn
PP

PPt  

 Step 6. Make the decision concerning the test. 
 

Lower-Tail Test Upper-Tail Test Two-Tail Test 
Because tc = –3.16 < tt = 
–1.303, one rejects H0 at 
α = 0.10. Configuration A 
produces fewer “no 
growth” tubes than does 
Configuration B. 

Because tc = –3.16 >/  t = 
1.303, one cannot reject H0 
at α = 0.10. Configuration A

 does not produce more “no 
growth” tubes than does 
Configuration B. 

Because tc = –3.16 < tt = 
–1.684, one must reject H0 at 
α = 0.10. Configurations A 
and B differ in that 
Configuration A produces 
significantly fewer “no 
growth” tubes than does 
Configuration B. 

3.2.2 Optional Two-Sample Bioequivalency Testing 

Recall that bioequivalency testing – including noninferiority and nonsuperiority 
testing – is different from hypothesis testing for significance. In general significance 
testing, one is comparing two treatments to determine if they are significantly 
different – larger, smaller, or either. The null hypothesis (H0) is rejected if outcomes 
are different enough to be determined significant at the α level specified. However, 
as discussed in Chapter 2, a rejection of the HA hypothesis does not mean there is no 
difference between samples groups, but only that a difference could not be detected 
by the statistic used. 
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 Because many occasions occur when equivalence between data sets from two 
samples is the important question, an actual equivalency test can be used to assess 
this. For example, a microbiologist may want to replace one nutrient medium with 
another due to cost, substitute one supplier for another, use an alternate method, 
instead of the standard one, or even replace one stain with another – but only if these 
prove to be equivalent – that is, they can be substituted for one another in use. Recall 
from Chapter 2 that the alternative hypothesis (HA) and the null hypothesis (H0) are 
reversed in equivalence testing. That is, if two methods, samples, or items produce 
measurable data that are statistically equivalent – interchangeable – the H0 
hypothesis, now the hypothesis of difference, is rejected at α. Conversely, if the two 
data sets cannot be demonstrated equivalent, the null hypothesis of nonequivalence is 
accepted.  
 

General Hypothesis Construction for Equivalence Testing 

H0: A < B 
HA: A ≥ B 

H0: A > B 
HA: A ≤ B 

H0: A ≠ B 
HA: A = B 

If the test is significant, H0  
is rejected. 

If the test is significant, H0 
is rejected. 

If the test is significant, H0 
is rejected. 

 
 In equivalence testing, one specifies what degree of difference constitutes a 
significant difference, and it is symbolized as ∆. It may be a one log10 difference 
between methods, or 1/10 of one log10. ∆ is a set value that sets a difference that is 
worth detecting. One concludes that at a specific difference, ∆, the two samples are 
different if A – B < –∆, or A – B > ∆. Noninferiority and nonsuperiority are one-sided 
tests of bioequivalence.* 

3.2.3 Two Independent Samples: Sample Variances Assumed Equal 

Let us look at the test structures carefully. 

Noninferiority Test: 
HA: A ≥ B 

Nonsuperiority Test: 
HA: A ≤ B 

Equivalence 
(Both Nonsuperiority and 
Noninferiority Tests are 
used.) 

Two-sample equivalence tests follow the same logic as 
testing one sample compared to a standard, as discussed in 
Chapter 2. In this case, one sample group is compared to 
another sample group arbitrarily labeled A and B.  

Two one-sided tests for 
equivalence rule out 
superiority and inferiority. 

 
 
 

                                                 
* More precisely, a bioequivalence test is composed of two one-sided tests; note that “one-
sided,” the term used in bioequivalence testing, means the same as “one-tail.” 

Noninferiority Nonsuperiority Equivalence 

Lower-Tail  Upper-Tail  Two-Tail 
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3.2. Other Topics
 

Test Statistic Used: 

( )
d

c s
dt i

∆−−=  
d

c s
dt s

−∆=  

( )
d

c s
dt i

∆−−=  and 

d
c s

dt s

−∆=  

where d is the difference between sample group means. ∆ is the set level of what 
constitutes a significant difference. 
 The six-step procedure makes the process easy. 
 Step 1. State the hypothesis. 

 
Noninferiority Nonsuperiority Equivalence 
H0: Group A < Group B 
HA: Group A ≥ Group B 

H0: Group A > Group B 
HA: Group A ≤ Group B 

H0: Group A > Group B 
and 
H0: Group A < Group B 
HA: Group A = Group B 

If H0 is rejected, conclude 
Group A is noninferior to 
Group B at α. 

If H0 is rejected, conclude 
Group A is nonsuperior to 
Group B at α. If both one-sided tests 

reject H0, Group A = 
Group B at α. 

 
 Step 2. Set α and sample sizes, nA and nB. 
 Step 3. Write out the test statistic used. 
 Step 4. Write the decision rule. 

Noninferiority Test Nonsuperiority Test 
Equivalence Test 
(Both noninferiority and 
nonsuperiority tests are run.) 

If tc tt i > , reject H0  

( )2, −+= BnAnt tt α  

If tsc tt > , reject H0 

( )2, −+= BnAnt tt α  

Using 2 one-sided tests at α: 
   If ( )2, −+=> BAs nnttc ttt α , and if 

   ( )2, −+=> BAi nnttc ttt α , accept  
   equivalence at α. 

 Step 5. Perform the experiment. 
 Step 6. Make the decision. 
 
 Example 3.4. For many years, silver halide preparations have been used to treat 
dicubitus ulcers. A microbiologist working with a new formula that purports to make 
silver more readily absorbed into infected tissues wants to be sure that plasma blood 
levels of silver in test animals have not changed from those associated with the 
standard, less available silver compound. The following levels of Ag were detected 
in blood sera after 2 weeks of continuous use of the product formulae in laboratory 
test animals, 30 samples (n) per formula. A is the new compound, and B is the 
standard compound. The researcher can accept equivalence, if the two compounds do 
not differ more than 20%; ∆ = ± 20%. 
  
 

Noninferiority Nonsuperiority Equivalence 
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 Step 1. State the hypothesis. 
 
Noninferiority Test Nonsuperiority Test Equivalence Test 
H0: A < B 
HA: A ≥ B 

H0: A > B 
HA: A ≤ B 

H0: A > B and H0: A < B 
HA: A = B 

H0: The new treatment 
outcome is less than –∆. 

H0: The new treatment 
outcome is more than ∆. 

H0: The new treatment outcome 
is different than that of the 
standard (larger or smaller). 

 
 Step 2. Set α, n, and ∆.  
 
Noninferiority Nonsuperiority Equivalence 
Let us set α at 0.10, 
nA = nB = 30, and ∆ = 
20% of standard results. 

Let us set α at 0.10, 
nA = nB = 30, and ∆ = 20% of standard results. 

Because we use 2 one-way 
tests, let us set α at 0.10 for 
each, nA = nB = 30, and ∆ = 20% 
of standard results. 

 
 Step 3. Write out the test statistic. 
 
Noninferiority Nonsuperiority Equivalence 

( )
d

c s
dt i

∆−−=  
d

c s
dt s

−∆=  ( )
d

c s
dt i

∆−−=  and 
d

c s
dt s

−∆=  

 
 Step 4. Write out the decision rule. 
 
Noninferiority Nonsuperiority Equivalence 
If tc tt i ≥ , reject H0; non-
inferior at α = 0.10.  
tt = t(0.10, 30 + 30 – 2) = 1.303. 

If tc tt s ≥ , reject H0; non-
superior at α = 0.10.  
tt = t(0.10, 30 + 30 – 2) = 1.303 

If tc tt i >  and tc tt s > , reject H0; 
equivalent at α = 0.10.  
tt = t(0.10, 30 + 30 – 2) = 1.303 

 
 Step 5. Perform the experiment. The collected data are presented in Table 3.4. 
 

Table 3.4 Collected data for Example 3.4 
n A B  n A B  n A B 
1 0.17 0.23  11 0.12 0.24  21 0.26 0.33 
2 0.15 0.26  12 0.13 0.26  22 0.50 0.22 
3 0.41 0.12  13 0.21 0.47  23 0.29 0.26 
4 0.22 0.14  14 0.17 0.40  24 0.24 0.20 
5 0.41 0.30  15 0.29 0.25  25 0.20 0.21 
6 0.44 0.27  16 0.30 0.24  26 0.21 0.17 
7 0.26 0.24  17 0.13 0.20  27 0.34 0.28 
8 0.20 0.23  18 0.13 0.17  28 0.33 0.32 
9 0.28 0.24  19 0.20 0.06  29 0.21 0.24 

10 0.14 0.25  20 0.20 0.16  30 0.23 0.26 
 
  30== BA nn  
  2457.0=Ax   0986.0=As  
  2407.0=Bx   0785.0=Bs  
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 We have set ∆ as a 20% difference from Bx ; ∆ = 0.20 × 0.2407 = 0.0481, which 
takes on two values, ± 0.0481, corresponding to ± ∆. The nonsuperiority and 
noninferiority tests will be in terms of Group A to Group B. This is arbitrary, for we 
could also set the statistic in terms of Group B to Group A. 
 005.02407.02457.0 =−=−= BA xxd
between Groups A and B mean values. ∆ provides the limit that these values can 
differ. A – B cannot be greater than ∆ in order to reject H0. 

  ( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛ +

−+
−−=

BABA

BBAA
d nnnn

snsns 11
2
11 22

 

  ( ) ( ) 0230.0
30
1

30
1

23030
0785.0290986.029 22

=⎟
⎠
⎞⎜

⎝
⎛ +

−+
+=ds  

 We will compute both sct  and ict , because we need both in this example. If you 
are performing a nonsuperiority test, you need only compute sct , and if you are only 
doing a noninferiority test, you need only compute ict . If you are doing an 
equivalence test, you compute both. 

  ( ) ( ) 3087.2
023.0

0481.0005.0 =−−=∆−−=
d

c s
dt i  

  8739.1
023.0

005.00481.0 =−=−∆=
d

c s
dt s  

 Step 6. Make the decision. 
 
Noninferiority Nonsuperiority Equivalence 
As ict  = 2.3087 > tt = 1.303, 
the H0 hypothesis is rejected 
at α = 0.10. Group A is non-
inferior to Group B. 

As sct  = 1.8739 > tt = 1.303, 
the H0 hypothesis is rejected 
at α = 0.10. Group A is non-
superior to Group B. 

For the two one-tail tests, if 
each tc > tt, reject the H0 
hypothesis at α = 0.10. We 
consider the groups 
equivalent. As sct  = 1.8339 > 

1.303 and ict  = 2.3087 > 
1.303, reject H0 at α. The 
groups are equivalent. 

3.2.4 Confidence Interval Approach 

The procedures used in Chapter 2 also are used for two-sample tests. 
 
 Nonsuperiority: If ∆ > d + tαsd, reject H0 at α. 
 Noninferiority: If ∆ < d – tαsd, reject H0 at α. 
 Equivalence: If ∆ falls outside of d ± tα/2sd, reject H0 at α. 
 

. This calculation provides the difference, d, 
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Chapter 4 
Analysis of Variance 

Key Point 
 

Analysis of Variance is used in 
comparing more than two sample groups. 

 
 

 The general statistical rationale behind ANOVA lies in the comparison of two 
variances: the variance between the treatments and the variance within the 
treatments. If the between- and within-variances are equal, then no treatment effect is 
present. ANOVA variances are calculated by computing the sum of squares, e.g., 
( )∑ − 2xx , and dividing by the set degrees of freedom, which converts the sum of 

squares calculation into a variance estimate. The mean square error (MSE) term in 
ANOVA is the variance estimate, 2

Eσ , within the treatments, that is, the random 
variability. The mean square treatment (MST) term consists of the variance estimate, 

2
Tσ , between the treatments; that is, the treatment effect. If the H0 hypothesis is true, 

there is no treatment effect – then both terms (MST and MSE) are unbiased estimates 
of the random variability, and no treatment effect is present. That is, MST ≈ MSE. 
 If a treatment effect is present, MST is composed of both random error and the 
treatment effect, so MSTreatment = 2

Eσ  + 2
Tσ . If the treatment effect is significant, 

MSError remains the measurement of random error, or 2
Eσ . If 02 =Tσ , or no treatment 
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One very important statistical method for microbiologists to understand is Analysis 
of Variance (ANOVA). In its most basic form, it is but an extension of two-sample 
testing that includes testing of more than two sample groups. For example, there may 
be four sample groups in a study to compare or three media types to contrast. The 
main difference from our previous work is that ANOVA uses variances, s2, as its 
prime measurement. The F distribution used in ANOVA is just the t-tabled value 
squared. A tt tabled value of 1.96, when computing two samples in the F distribution 
is F = 3.84, which is t2. 
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effects are present, then the treatment effect drops out of the equation; hence, 
MSTreatment = MSError. There are no upper- or lower-tail tests in ANOVA, only a two-
tail test, or a measure of differences. 
 Let us now look at one-factor Analysis of Variance models – one factor in that 
only one variable is evaluated between and within sample groups. We will discuss 
two forms of this ANOVA. 
 
  1. The Completely Randomized Design, and 
  2. The Randomized Complete Block Design. 
 

Key Point 
 

The completely randomized design is analogous to the two sample 
independent t-test, and the randomized complete block design 

is analogous to the two-sample matched-pair test. 
 

4.1 The Completely Randomized One-Factor ANOVA 

Suppose a microbiologist decides to compare four spore recovery methods A, B, C, 
and D (the treatment factor) measured by the colony counts recovered of Bacillus 
subtilis spores. The easiest way to depict this is presented in Table 4.1. 

Table 4.1 One factor, four treatments, and three replicates 

 Suspension (treatment factor) 
 A B C D 

1 1 1 1 
2 2 2 2 Replicates 
3 3 3 3 

 
 A completely randomized design is distinguished in that the order of the 
experimental units tested is selected at random across all treatments. That is, one 
draws the run order from the complete data set of 12 points (4 treatment suspensions 
× 3 replicates) in completely randomized sampling. Hence, each of the 12 data points 
has a 1/12 probability of being selected over the 12 sample run times. In order to do 
this, the cells can be recoded sequentially 1 through 12, as in Table 4.2. 

Table 4.2 Coded cells for population recovery of Bacillus subtilis spores 

 Suspension (treatment factor) 
 A B C D 
Replicates 1 4 7 10 
 2 5 8 11 
 3 6 9 12 

 Then each of the 12 data points are selected at random, say, with an outcome as 
depicted in Table 4.3. 
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4.1. The Completely Randomized One-Factor ANOVA
 

Table 4.3 Randomization schematic for population recovery of Bacillus subtilis spores 

 Suspension (treatment factor) 
 A B C D 

1 (4) 4 (9) 7 (2) 10 (5) 
2 (10) 5 (7) 8 (8) 11 (12) Replicates 
3 (3) 6 (11) 9 (1) 12 (6) 

 
 Look at suspension C and the third value point, 9. To the immediate right, in 
parenthesis, is (1). The “1” designates that this is the first sample run through the 
experimental process. This is followed by suspension C’s seventh value point, (2). 
This, in turn, is followed by suspension A’s third value point, (3), and is continued 
until the 12th replicate of suspension D, 11, is run. 
 The linear statistical model for this design is: 

  ijiij eTy ++= µ   
⎩
⎨
⎧

=
=

replicates21
treatments,2,1

n,,j
ki
…
…  

where yij is the quantitative value of the jth treatment (colony-forming units, in this 
case), µ is the common mean of all treatment factors, Ti is the ith treatment effect, 
where i = A, B, C, and D treatments, and eij is the random error, or noise component 
that cannot be accounted for via the treatments. 
 To keep things as simple and straight-forward as possible, let us work an example 
to learn this statistical method. 
 
 Example 4.1. A microbiologist is working with a new antibiotic drug, which has 
proved very effective on bacteria producing β-lactamase, specifically Staphylococcus 
aureus, Methicillin-resistant strains. Five replicate drug samples will be used with 
four different preservatives. The drug samples are calculated to undergo an aging 
process of 90 days at 45°C prior to the study’s commencement. The study will 
expose each drug sample to a 10 mL suspension of 1.0 × 105 organisms per mL for 
twenty (20) min. The bacterial cells will then be cleansed of any extracellular drugs, 

from baseline will then be calculated and compared, using a completely randomized, 
one-factor analysis of variance method. 
 

Key Point 
 

Analysis of variance tests are for detecting differences between treatments. 
 

 
 The six-step procedure simplifies the ANOVA calculation process. 
 Step 1. State the test hypotheses.  

H0: Treatment A = Treatment B = Treatment C = Treatment D in microbial 
reductions. 
HA: At least one treatment differs from the others in terms of microbial 
reductions. 

plated in duplicate, and incubated at 35 ± 2°C for 24–48 h. The microbial reductions 
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 Step 2. Specify α and n. Because this is a preliminary research and development 
evaluation, n = 5 replicates of each treatment, for a total of 5 × 4 = 20 samples, and 
we will arbitrarily set α at 0.10. 
 Step 3. Select the test statistic. 
 We will use the completely randomized analysis of variance design to compute 
an Fc (Fcalculated) value. 
 Step 4. Present the acceptance/rejection criteria. 
  If Fc > Ft, reject H0 at α.  
  Ft = Ft(α; numerator, denominator) = Ft (α; [a – 1], a[n – 1]) 

where a = number of treatment factors compared (here, 4), n = number of replicates 
within each treatment factor (here, 5), and α = set level (here, α = 0.10). 
Ft(0.10);(4 – 1, 4(5 – 1)) = Ft(0.10; 3, 16) from Table A.4, the F Distribution Table. 3 is the 
numerator, 16 is the denominator, and α = 0.10. 
 

The Key to Using the F Table 
 

First, find in Table A.4 the appropriate α level to be used. Find the degrees of freedom 
value (here, it is 3) for the numerator, v1. This is presented in the first row. Then, find 
the degrees of freedom for the denominator, v2 (here, it is 16). Where 3 and 16 meet at 
α = 0.10, the F value resides. It is 2.46, or Ft(0.10; 3, 16) = 2.46. 

 
 
 So, if Fc > 2.46, reject H0 at α = 0.10. 
 Step 5. Perform the experiment. 
 
treatments and replicates (4 × 5 = 20 samples). Twenty samples were selected at 
random from the stability chamber. Next, twenty (20) labels, numbered 1 through 20, 
were placed in a box and shaken for 2 min. The researcher pulled one label out with 
the value, “3.” The sample labeled “3” would be the first sampled. Then, the label 
“3” was put back in the box, which was again shaken for 2 min. The next drawing 
was “17.” The 17th sample would be the second one tested. This process continued 
until all the treatments were assigned a run order, which is listed in Table 4.4. 

Table 4.4 Randomly-selected drug sample labels 

Treatment A Treatment B Treatment C Treatment D 

Sample Run 
order Sample Run 

order Sample Run 
order Sample Run 

order 
1 (3) 6 (5) 11 (12) 16 (14) 
2 (17) 7 (10) 12 (16) 17 (7) 
3 (9) 8 (4) 13 (18) 18 (20) 
4 (11) 9 (15) 14 (8) 19 (13) 
5 (1) 10 (19) 15 (2) 20 (6) 

      

 Undoubtedly, after a number of drawings, a sample previously drawn is redrawn. 
It is then merely placed back into the box, reshuffled, and a new value drawn. This 
process is termed sampling with replacement, and it assures that each value has 

4. Analysis of Variance 

The microbiologist researcher randomized the run order of the experiment across 
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4.1. The Completely Randomized One-Factor ANOVA
 

(number of treatments × number of replicates). If the drawn labels are not placed 
back into the box, the sample schema becomes biased. In this example, the first 
drawn is 1/N, or 1/20 probability, the second drawn would be 1/N – 1 = 1/19 
probability, and then 1/N – 2, and all the way to 1/20 – 19, or 1/1. 
 An easier way to do this is with a computer-generated random number program. 
After all 20 samples have been acquired, the completely randomized run order is 
presented (Table 4.5). This schema is easier to follow. 

Table 4.5 Completely randomized run order for Example 4.1 

Treatment 
number Run order 

 1   3 
 2 17 
 3   9 
 4 11 
 5   1 
 6   5 
 7 10 
 8   4 
 9 15 
10 19 
11 12 
12 16 
13 18 
14   8 
15   2 
16 14 
17   7 
18 20 
19 13 
20   6 

 
 After the study was conducted, according to the run order, the colony count values 
were recorded in log10 scale (Table 4.6). 

Table 4.6 Treatment values for Example 4.1 

  Treatments 
  A B C D 

1 3.17 2.06 2.27 4.17 
2 2.91 3.21 3.78 4.01 
3 4.11 2.57 3.59 3.92 
4 3.82 2.31 4.01 4.29 

Replicates 

5 4.02 2.71 3.15 3.72 

 In the completely randomized analysis of variance design, one is interested in 
comparing the variances among the treatments (treatment effects) and the variance 
within the treatments (random error effect). Both these components are what make 
up the total variability. 
 

= 1/20 probability of being selected. N, here, represents the total number of samples 1/N 
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Total Variability = Variability due 
to Treatments + Variability due to 

Random Error 
SSTotal = SSTreatment + SS Error 

( )∑∑ − xxij  = ( )∑ −
2. xxa j  + ( )∑∑ − 2. jij xx  

which is the difference of each value from the grand average = difference of each 
treatment mean from grand mean + difference of each replicate from its own mean. 
 SSTotal (sum of squares total) consists of the variability between each xij 
observation and the mean of all observations, the grand mean, x . The total sum of 
squares in ANOVA is compartmentalized into variability among the groups 
(treatment effect) and within the groups (random error effect). The treatment effect is 
the difference between the treatment means, jx. , and the grand or overall mean, x . 
Variability within each treatment group (the random error component) is the 
difference between individual xij observations within a specific treatment group, jx. . 
All of these differences are squared; if they are not, their sums will equal zero.  
 Because the formulas look complex, we will use an ANOVA table and simplify 
the work (Table 4.7). 

Table 4.7 ANOVA table for Example 4.1 

Treatment A 
( )21.xxij −  

Treatment B 
( )22.xxij −  

Treatment C 
( )23.xxij −  

Treatment D 
( )24.xxij −  

(3.17–3.61)2 = 0.1936 (2.06–2.57)2 = 0.2601 (2.27–3.36)2 = 1.1881 (4.17–4.02)2 = 0.0225 

(2.91–3.61)2 = 0.4900 (3.21–2.57)2 = 0.4096 (3.78–3.36)2 = 0.1764 (4.01–4.02)2 = 0.0001 

(4.11–3.61)2 = 0.2500 (2.57–2.57)2 = 0.0000 (3.59–3.36)2 = 0.0529 (3.92–4.02)2 = 0.0100 

(3.82–3.61)2 = 0.0441 (2.31–2.57)2 = 0.0676 (4.01–3.36)2 = 0.4225 (4.29–4.02)2 = 0.0729 

(4.02–3.61)2 = 0.1681 (2.71–2.57)2 = 0.0196 (3.15–3.36)2 = 0.0441 (3.72–4.02)2 = 0.0900 

( ) =−∑ 2
1.xxij 1.1458 ( ) =−∑ 2

2.xxij  0.7569 ( ) =−∑ 2
3.xxij 1.8840 ( ) =−∑ 2

1.xxij  0.1955 

61.3
5
03.18 ==Ax  57.2

5
86.12 ==Bx  36.3

5
80.16 ==Cx  02.4

5
11.20 ==Dx  

 Step 1. Find the mean values ( )jx. of each treatment. This is done using the 
information computed in Table 4.7. In this example, there are 4: Ax , Bx , Cx , and 

Dx . Next, find the grand mean, or the mean of the means ( x ). 

  39.3
4

02.436.357.261.3
4

=+++=+++= DCBA xxxxx  

 Step 2. Find ( )2. jij xx − , or the difference within each treatment, the error estimate. 
This is the individual treatment values minus the means of the individual treatments 
for that group. These individual values were determined in Table 4.7. 
  ( ) ( ) 982.31955.08840.17569.01458.12

. =+++=∑∑ −= jijError xxSS  

4. Analysis of Variance 68



4.1. The Completely Randomized One-Factor ANOVA
 
 Step 3. Find the SSTotal. This is simply the grand mean subtracted from each xij 
value squared, then summed. 
  ( )∑∑ −=

2
xxSS ij  

          ( ) ( ) ( ) ( )2222 39.372.339.329.439.391.239.317.3 −+−++−+−= …  
         563.9=  
 Step 4. Find the SSTreatment by subtraction. 
   
  9.563 – 3.982 = 5.581 = SSTreatment 

Total, SSError, and 
SSTreatment

treatment value (MSTreatment) by the mean square error (MSError) to get the F calculated 
value (Fc).  

Key Point 
 

Remember this table, and use it! 
 

Table 4.8 Completely randomized design ANOVA procedure table, Example 4.1 

DF Sum of squares Mean square Fc 

Treatment c – 1 SSTreatment Treatment
Treatment MS
c

SS =
−1

 c
Error

Treatment F
MS

MS =  

Error c(r–1) SSError ( ) Error
Error MS

rc
SS =

−1
  

Total rc – 1 SSTotal 

DF = degrees of freedom. The sum of squares must be averaged by the appropriate degrees 
of freedom; c = number of columns or treatments; r = number of rows or replicates; c = 4; c 
– 1 = 4 – 1 = 3 degrees of freedom; c (r – 1) = 4 (5 – 1) = 
4 × 4 = 16 degrees of freedom; rc – 1 = 5 × 4 – 1 = 20 – 1 = 19, or just add degrees of 
freedom for treatments and error, 3 + 16 = 19. 

 

Table 4.9 Values from ANOVA table for Example 4.1 

Source DF Sum of squares Mean square Fc 
Treatment 3 5.581 5.581/3 = 1.860 1.860/0.249 = 7.47 
Error 16 3.982 3.982/16 = 0.249  
Total 19 9.563   

The calculated F value is Fc = 7.47. 

 

 

 Step 5. Create the ANOVA procedure table (Table 4.8). Based on the formulas 

T

SS  – SSTotal Error

error terms. Enter those values into Table 4.9. Next, divide the mean square 

 = SS

 in Table 4.9. Then, determine the degrees of freedom for the treatment and 

Treatment

listed in Table 4.8, create Table 4.9. Enter the computed values SS

Source 
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 Step 6. Make the decision. If Fc > Ft, reject H0 at the α level. 
  Because Fc = 7.47 > Ft = 2.46, Ft(α; c – 1, c(r – 1)) = Ft(0.10; 3, 16) = 2.46 (from  Table 
A.4). Reject H0 at α = 0.10. In fact, looking at the F table (Table A.4) at 3, 16 
degrees of freedom, Fc is larger than Ft at α = 0.01 = 5.29. Hence, p < 0.01, which is 
highly significant. 
 

Key Point 
Remember p < 0.01 means the probability of computing an F value 
as large or larger than 7.47, given the null hypothesis is true, is less 

than 0.01, or in statistical terms, ( )47.7 0≥ HFp c . 

 
 The same results can be achieved using a statistical software package. We will use 
MiniTab®. For MiniTab®, the data are input into two columns. Here, column 1, or 
C1, is the treatment response, and Column 2, or C2, is the jth treatment value, coded 
1 through 4, where 1 = Treatment A, 2 = Treatment B, 3 = Treatment C, and 4 = 
Treatment D. 
 Table 4.10 represents the actual MiniTab® input values. The log10 treatment 
values are in Column 1 (C1) and the treatments, 1 – 4, in Column 2. Table 4.11 is the 
actual MiniTab® ANOVA output. Note also that the exact p value, p = 0.002, is 
computed, as well as a 95% confidence interval for each treatment. 

Table 4.10 Actual MiniTab® input table, Example 4.1 

n 
(Row) 

C1 
(Treatment 

value) 

C2 
(Treatment 

code) 

 n 
(Row) 

C1 
(Treatment 

value) 

C2 
(Treatment 

code) 
1 3.17 1  11 2.27 3 
2 2.91 1  12 3.78 3 
3 4.11 1  13 3.59 3 
4 3.82 1  14 4.01 3 
5 4.02 1  15 3.15 3 
6 2.06 2  16 4.17 4 
7 3.21 2  17 4.01 4 
8 2.57 2  18 3.92 4 
9 2.31 2  19 4.29 4 

10 2.71 2  20 3.72 4 
 
 MiniTab® also provides a table of 1 – α confidence intervals. The sample groups that 
overlap in their confidence intervals are not different from each other at the α level 
of significance. In this example, Level 1 (Treatment A) and Level 2 (Treatment B) 

intervals overlap, so they are not significantly different at α = 0.05. 

 

 

 

true < 0.01

α = 0.05. However, Level 1 (Treatment A) and Level 3 (Treatment C) confidence 
confidence intervals do not overlap, so they are different from one another at 
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Table 4.11 Actual MiniTab® ANOVA output 

One-way ANOVA with 95% confidence intervals for each treatment 
Source DF SS MS F P 

C2 (Treatment) 3 5.581 1.860 7.47 0.002 
Error 16 3.982 0.249   
Total 19 9.563    

    
    

Individual 95% CIs for Mean Based on Pooled St 
Dev 

Level N Mean StDev 
1 5 3.6060 0.5352 

2 5 2.5720 0.4350  

3 5 3.3600 0.6863 

4 5 4.0220 0.2211 

Pooled StDev = 0.4989 

 

4.2 Contrasts 

The ANOVA table (Table 4.11) has clearly demonstrated that significant differences 
exist among treatments, but which one or ones? The graph in Table 4.11 is a valuable 
aid in determining which treatments differ but is not actually a contrast procedure. 
Instead, it is a set of individual confidence intervals with a common variance. In 
practice, one will want to actually perform a series of contrast tests. There are a 
number of methods that can be used to determine where differences exist. We will 
use the Tukey method, for it is neither too liberal, nor too conservative. 
 The Tukey method requires the microbiologist to use a Studentized range value 
(qα; a, f) (Table A.3), where α is the Type I error level, a is the number of treatments 
or groups, and f = N – a, the total number of observations minus the number of 
treatment groups, a. The qα value provides a critical Studentized value for all pair-
wise contrasts, much like a tα/2 value in the two sample t-test. All possible treatment 
pairs are compared to one another. If ( ) xfaji sqxx ,;α>− , reject H0. The two treatments 
( ix  and jx ) differ significantly at α. 
 The sx value is computed as: 
  nMSnss Ex == 2  
where n = number of replicates per sample set. 
 There are a(a–1)/2 pair-wise contrasts possible. In this four-treatment group 
example, there are a(a – 1)/2 = 4(4 – 1)/2 = 12/2 = 6 pair-wise contrasts. 
They are 1 vs. 2, or A vs. B; 1 vs. 3, or A vs. C; 1 vs. 4, or A vs. D; 2 vs. 3, or B vs. 
C; 2 vs. 4, or B vs. D; and 3 vs. 4, or C vs. D. n = 5 replicates. 
  249.0=EMS  (from Table 4.11). 

  2232.0
5
249.0 ===

n
MSs E

x  
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 Let us use α = 0.05, a = 4, f = N – a = 20 – 4 = 16, and q(0.05; 4, 16) = 4.05 (from 
Table A.3). q sx = 4.05(0.2232) = 0.9040 = the critical value. 
If xji sqxx >− , the pairs differ at α. 
 

Mean Difference xsq  
Significant/ 
Not Significant at α 

034.1572.2606.3 =−=− BA xx  9040.0>  Significant 

300.0360.3606.3 =−=− CA xx  9040.0>/  Not Significant 

416.0022.4606.3 =−=− DA xx  9040.0>/  Not Significant 

788.0360.3572.2 =−=− CB xx  9040.0>/  Not Significant 

450.1022.4572.2 =−=− DB xx  9040.0>  Significant 

660.0022.4606.3 =−=− DC xx  9040.0>/  Not Significant 
 
 A plot of the treatments shows where these differences are (Fig. 4.1). Table 4.11, 
the MiniTab® plot of 95% confidence intervals, also did this in this example. 
 

 

Fig. 4.1 Differences among treatments, Example 4.1 

 At the 95% confidence level, Treatment A is different from Treatment B but not 
Treatments C or D. Treatment B is different from Treatments A and D but not 
Treatment C. Treatment C is not different from the others. Treatment D is different 
from Treatment B but not Treatments A or C. 

4.3 Confidence Intervals 

A 100(1 – α) confidence interval for each treatment group can be calculated. 

  ( ) n
MStx E

aNii −±= ;2αµ  

 For example, an α = 0.01 confidence interval for µ1 and µ3 will be presented. 
  a = number of treatments = 4 
  54321 ==== nnnn  
  ( ) 921.216;201.0 =t  (from Table A.1) 
  249.0=EMS  
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4.4. Sample Size Calculation
 

  ( ) =±= − n
MStx E

aN;211 αµ  
5
249.0921.2606.3 ±  

  6518.0606.31 ±=µ  
  2578.49542.2 1 ≤≤ µ  
  6518.036.33 ±=µ  
  0118.47082.2 3 ≤≤ µ  

4.4 Sample Size Calculation

The appropriate sample size should always be determined when beginning the six-
step procedure, specifically at Step 2. Also, if the alternative hypothesis (HA) is 
rejected at the end of the experiment (Step 6), it is prudent to check the sample size 
to assure that the statistic was powered adequately to detect significant differences. 
 We will employ a general formula for determining the sample size of each 
treatment. 

 ( )
2

2
22

δ
βα zzasn +≥  

where n = individual treatment replicate size, a = number of treatment groups to 
compare, s2 = MSE, zα/2 = normal table value (Table A.2) for α/2, zβ = normal table 
value (Table A.2) for β, and δ = detection level required by the statistic. 
 In example 4.1, a = 4 and s2 = MSE = 0.249. Let us use α = 0.05, β = 0.20, and an 
δ value of 1.5. So,  
  96.12 =αz  (Table A.2) 
  842.0=βz  (Table A.2) 
  5.1=δ  log10 

  
( )

2

2
2

2

δ
βα zzasn +≥  

  ( )( ) 448.3
5.1

842.096.1249.04
2

2

≈=+≥n  

Because we used five replicates, the detection level, δ, will be smaller than 1.5 log10 
microorganisms. What is the detection level? Simply rearrange algebraically the 
terms of the sample size determination formula, solving for δ. 

  ( )
n

zzas 2
2

2
βαδ +=  

  ( )( )
5

842.096.1249.04 2+=δ  

  25.1=δ  log10 
 So, if one required a 1.5 log10 detection level, the sample size would be more than 
adequate. If a detection level of one log10 was needed, the study could fail to detect 
true differences. That is, it would be underpowered. The correct sample size 
minimum would be per treatment group. 
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  ( )( ) 882.7
0.1

842.096.1249.04
2

2

≈=+≥n  replicates per group 

4.5 Randomized Block Design

Like the paired two-sample t-test, the randomized block design attempts to add 
power to the statistical method by blocking or comparing treatments within the 
homogeneous groups. For example, to evaluate the incidence of post-surgical 
infections in patients who have been presurgically prepped with one of three 
preoperative compounds – a 4% chlorhexidine gluconate (CHG), a 10% povidone 
iodine (PVP-I), and a parachlorametaxylenol (PCMX) – four hospitals in different 
regions of the United States were evaluated. Each hospital (block) applied the three 
topical antimicrobials, which were randomized to the patients in each hospital (Fig. 
4.2).  
 

Within each 
hospital, the 3 
treatments (anti-
infective drugs) 
are randomized. 
 

 

CHG 
PVP-I 
PCMX 
 

 

CHG 
PVP-I 
PCMX 
 

 

CHG 
PVP-I 
PCMX 
 

 

CHG 
PVP-I 
PCMX 
 

  Hospital 1  Hospital 2  Hospital 3  Hospital 4 

Fig. 4.2 Randomization is restricted to within each block 

 Each hospital may vary in average post-surgical infection rates (Fig. 4.3), but 
blocking will remove the hospital effect, by comparing the three products’ actual 
effects in each hospital. Hence, in Hospital 1, Block 1 randomizes who gets each of 
the three drugs. The same process is followed by Hospitals 2, 3, and 4. Hospitals are 
not compared to one another and are known to be different in infection rates. If they 
were not, blocking would be of no use. The treatments are confined to their 
evaluation within each hospital, not among them. 
  

 

Fig. 4.3 Infection rates per hospital depicted by a bar chart 
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4.5. Randomized Block Design
 
 The critical difference between the completely randomized design previously 
discussed and the randomized block design is that, in the latter design, the 
randomization is within each block, not among blocks. 
 In the completely randomized design (Table 4.12), each N observation is equally 
likely to be sampled, because the randomization is over all N values (N = 15). 

Table 4.12 Completely randomized design 

  Treatments  
 n 1 2 3  

1 7 3 8  
2 12 13 4  
3 9 1 11  
4 14 2 15  

Replicates 

5 10 5 6 N=15 
 
 In the randomized block design, randomization occurs only over the three 
treatments within in each block (Table 4.13). 

Table 4.13 Randomized block design 

 Treatments 
 1 2 3 

Block 1 1 3 2 

Block 2 2 1 3 

Block 3 2 3 1 

Block 4 3 1 2 

Block 5 3 2 1 
  
 The randomized block design is usually the more powerful design, for it isolates 
differences in blocks (hospitals) to get a more accurate computation of the treatment 
effect (surgical preparation product). So, the randomized block model requires the 
computation of the sum of squares for the blocks, or SSB. 
 The sum of squares for treatment effect is ( )∑ −=

2. xxbSS jT , and the mean 
square treatment = 

1−
=

a
SSMS T

T b = number of blocks and a = number of 
treatments. The sum of squares for blocks is ( )∑ −=

2. xxaSS iB , and the mean square 
blocks = 

1−
=

b
SSMS B

B . The sum of squares total is ( )∑∑ −
2xxij . The mean square 

total is not computed. The sum of squares error is ( )∑∑ − 2. jij xx , and the mean 
square error = ( )( )11 −−

=
ba

SSMS E
E . The complete model for the randomized block 

design is: 

, where 
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( )∑∑ − 2xxij  = ( )∑ − 2. xxb j  + ( )∑ − xxa i.  + ( )∑∑ − 2. jij xx  
SSTotal = SSTreatment + SSBlock + SSError 

 
 Combining these in an ANOVA table, we have Table 4.14. 

Table 4.14 ANOVA table 

Variation Degrees of 
freedom 

Sum of 
squares Mean square Fc Ft 

Treatments 
(Columns) a – 1 SS T T

T MS
a
SS =
−1

 Tc
E

T F
MS
MS = ( )( )11 −− baF  

(Table A.4) 
Blocks 
(Rows) b – 1 SS B B

B MS
b
SS =
−1

 Bc
E

B F
MS
MS = ( )( )( )11,1; −−− babtF α  

(Table A.4) 

Error (a–1) (b–1) SSE ( )( ) E
E MS
ba

SS =
−− 11   

Total N – 1 Total SS    
 
 Example 4.2. A microbiologist was asked to evaluate the effectiveness of three 
antimicrobials in hospitals throughout the continental United States. Four large 

preparation formulations were randomly assigned to surgical patients during a six-
month period. Out of 1000 procedures, the numbers of post-surgical infections were 
tallied. We will use the six-step procedure to perform this example. 
 
 Step 1. Write out the test hypothesis. 

0
procedures 
HA: At least one antimicrobial formulation is different from the others in 

Also, we want to assure the blocking was useful; that is, was the blocking significant, 
although we have no need to distinguish blocks? 
  H0: The blocks (hospitals) are not significantly different 
  HA: At least one hospital is different from the others 

(If the block effect is not significant, there is no need to use the 
block design. It is better to use the completely randomized design.) 

 Step 2. Select α and the number of treatments. 
  α = 0.05 
  a = 3 products (treatments) 
  b = 4 hospital groups (blocks) 
 Step 3. Write out the test statistic to use. 
  This will simply be the randomized block design. 
 Step 4. Make the decision rule. First, we need some intermediate calculations. 
  a = number of antimicrobial product formulations = 3 
  b = number of hospitals = 4 
  (a–1)(b–1) = degrees of freedom for error term = (3 – 1)(4 – 1) = 2 × 3 = 6 

teaching hospitals were chosen: A = Southeast, B = Northeast, C = Northwest, and 

4. Analysis of Variance 

t α ; a−1,( )

H : 4% CHG = Alcohol + CHG = PVP-I in infection rates per 1,000 

D = Southwest. Three generally supplied bulk antimicrobial preoperative skin 

infection rates per 1,000 procedures 
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4.5. Randomized Block Design
 
  (a – 1) = degrees of freedom for treatments = 3 – 1 = 2 
  (b – 1) = degrees of freedom for blocks = 4 – 1 = 3 
 
Treatments 
 Ft(α; a – 1; (a – 1)(b – 1)) = Ft(0.05; 2, 6) = 5.14 (Table A.4) 
 If Fc > 5.14, reject H0 at α = 0.05. The treatments are significantly different from 
one another at α = 0.05. 
 
Blocks 
  Ft(α; b – 1, (a – 1)(b – 1)) = Ft(0.05; 3, 6) = 4.76 (Table A.4) 
 If Fc > 4.76, reject H0 at α = 0.05. The blocks are significantly different from one 
another at α = 0.05, so the block design is applicable. 
 
 Step 5. Conduct the experiment. The sample design looked like this: 
 

Antimicrobial 
Formulation 

1 
4% CHG 

2 
Alcohol + CHG 

3 
Povidone Iodine 

Block       
Hospital A 12 (1) 19 (3) 31 (2) 
Hospital B 11 (2) 9 (3) 17 (1) 
Hospital C 17 (1) 12 (2) 25 (3) 
Hospital D 22 (2) 15 (1) 35 (3) 

  (x) = experimental run order by block (hospital) 
 
 Notice that the randomization was restricted to within each block. After the study 
had been completed, the actual rate per 1000 infections were put into the table for 
computational ease. 
 

 Antimicrobial Formulation (j)  
Blocks (i) 1.j 2.j 3.j  

Hospital Ai. 21 19 31 .Ax =23.67 
Hospital Bi. 11 9 17 .Bx =12.33 
Hospital Ci. 17 12 25 .Cx =18.00 
Hospital Di. 22 15 35 .Dx =24.00 

 1.x =17.75 2.x =13.75 3.x =27.00 19.50= x  
 

( )∑ −== 2. xxbSSSS jTreatmentT  

  ( ) ( ) ( )[ ] 50.3695.1900.275.1975.135.1975.174 222 =−+−+−=  
( )∑ −== 2. xxaSSSS iBlocksB  

  ( ) ( ) ( ) ( )[ ] 39.2735.1900.245.1900.185.1933.125.1965.233 2222 =−+−+−+−=  
( )∑∑ −== 2xxSSSS ijTotalT

( ) ( ) ( ) ( ) 00.6835.1900.355.1900.255.1900.115.1900.21 2222 =−+−++−+−= …  
BTTotalErrorE SSSSSSSSSS −−==  

  11.4039.27350.36900.683 =−−=  
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Make an ANOVA table (Table 4.15). 

Table 4.15 ANOVA table 

Source SS value df Mean square (MS) Fc Ft 
Significant/ 
Not significant 

Treatments 369.50 2 369.50/2=184.75 184.75/6.685=27.64 5.14a 
(Table A.4)

Significant 

Blocks 273.39 3 273.39/3=91.13 91.13/6.685=13.63 4.76b 
(Table A.4)Error 40.11 6 40.11/6=6.685    

Total SS 683.00      
a Ft(α; a, (a – 1)(b – 1)) 
b Ft(α; b, (a – 1)(b – 1)) 
 
 Step 6. Make the decision. 
 Because Fc = 27.64 > Ft = 5.14, clearly, the topical antimicrobial preparations are 
associated with significantly different post-operative infection rates. Also, because  
Fc = 13.63 > Ft = 4.76, the block effect was significant at α = 0.05, so the block 
design was effective. 
 One can do the same thing via a statistical computer program. Using the 

Table 4.16 Data, Example 4.2 

 C1 
xi (infection rate) 

C2 
Row code = block 
hospital (1, 2, 3, 4) 

C3 

(1, 2, 3) 
1 21 1 1 
2 19 1 2 
3 31 1 3 
4 11 2 1 
5 9 2 2 
6 17 2 3 
7 17 3 1 
8 12 3 2 
9 25 3 3 
10 22 4 1 
11 15 4 2 
12 35 4 3 

 
 

The infection rates are in column 1 (C1), the blocks in column 2 (C2), and the 
®

 Source DF SS MS F P 
Treatment 2 369.500 184.750 27.83 0.0001 
Blocks 3 273.667 91.222 13.74 0.004 
Error 6 39.833 6.639   
Total 11 683.00    

  

Column code = treatment  

Significant  

treatments in column 3 (C3). The analysis of variance table created with MiniTab  is 

4. Analysis of Variance 78

MiniTab® computer software’s ANOVA function, the data are keyed in as presented 
in Table 4.16.



 
 The same results as in a table prepared by hand are achieved by the software 
program. The p-values are those provided using the MiniTab® program. The p value 
can easily be done by hand, comparing Fc to Ftabled. One merely finds the first α 
value for the Ft value, which is greater than Fc. For example, if Fc > Ft0.05, then 
compare Fc to Ft0.01. If Fc > Ft0.01, compare it to Ft0.025. If Fc < Ft0.025, then the p value 
is the last Ft α where Fc > Ft. Here, Ft at α = 0.01, so the p value is 0.01, or p ≤ 0.01. 

4.6 Pair-wise Contrasts

When the treatment effect is significant, differences among treatments exist, but their 
location is unknown. To determine where the differences exist, a set of contrasts 
needs to be employed. We will continue to use the Tukey Contrast method. There are 
a(a – 1)/2 = 3(3 – 1)/2 = 6/2 = 3 possible pair-wise contrasts. 
  21 xx −  
  31 xx −  
  32 xx −  

where 2928.14685.6 === bMSs Ex  (the number of blocks, “b,” is used in the 
denominator). 
 As with the completely randomized design, if ( ) xfatji sqxx ,;α>− , where a is the 
number of treatments, and f is the degrees of freedom of the error term, which is  
(a – 1)(b – 1) = (3 – 1)(4 – 1) = 2 × 3 = 6. qt(0.05; 3; (a – 1)(b – 1)) = qt(0.05, 3, 6) = 4.76 (from 
Table A.3). qsx = 4.76 (1.2928) = 6.15. If ji xx − > 6.11, the pairs different from one 
another at α = 0.05. 
 15.6475.1375.1721 <=−=− xx   Not Significant 

 31 − xx Significant 

 15.625.130.2775.1332 >=−=− xx   Significant 

1x  and 2x  are not significantly different from each other, but 1x  and 3x , as well as 
2x  and 3x , are at α = 0.05. Recall that 1x  is 4% CHG, 2x  is alcohol + CHG, and 3x  

is PVP-I. Hence, the 4% CHG and the alcohol + CHG are not significantly different 
from each other at α = 0.05, but the 4% CHG and the alcohol + CHG are both 
significantly different from the povidone iodine. 

The 1 – α confidence interval for each treatment mean is calculated as: 

  ( )( ) b
MStx E

batt 11 −−±=µ  

 Let us determine the 1 – α confidence intervals for the 1x , 2x , and 3x  that predict 
µ1, µ2, and µ3, the population parameters. Recall that 
  75.171 =x  
  75.132 =x  

4.7 100 (1 – α) Confidence Intervals 

) Confidence Intervals α4.7. 100 (1 –  

= 17.75− 27.07 = 9.25 > 6.15   

α 2;( )
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  00.273 =x  
  685.62 == sMSE  
  a = 3; b = 4 
 Let us use α = 0.10, where α/2 = 0.05; tt(0.05, 6) = 1.943, from Table A.1, the 
Student’s t table. 

  ( )( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±= −− b

MStx E
ba 11;211 αµ  

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±=

4
685.6943.175.171µ  

   512.275.17 ±  
   26.2024.15 1 ≤≤ µ  

  ( )( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±= −− b

MStx E
ba 11;222 αµ  

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±=

4
685.6943.175.132µ

   512.275.13 ±  
   26.1624.11 2 ≤≤ µ  

  ( )( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±= −− b

MStx E
ba 11;233 αµ  

   512.227±  
   51.2949.24 3 ≤≤ µ  
 A 90% confidence interval graph can be made of these intervals to determine if 
the confidence intervals overlap (Fig. 4.4). If they do, they are equivalent; if not, they 
are different at α = 0.10. 
 

Fig. 4.4 Overlapping confidence intervals, Example 4.2 

 A statistical software package can also produce the set of 1 – α confidence 
intervals. Figure 4.4 is the output the MiniTab® confidence interval set of these data. 
The MiniTab® software produces the following Fig. 4.5. 
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4.8. Sample Size Calculation
 

 
Fig. 4.5 Individual confidence intervals, Example 4.2 

4.8 Sample Size Calculation 

The sample size calculation that was used in the completely randomized design is 
also used here. The s2 = MSE will generally be smaller than the MSE in a completely 
randomized design. 

 ( )
2
2

2

δ
βα zzasn +≥  

where 
  n = sample size per treatment group 
  a = number of treatments to be compared 
  zα/2 = normal tabled value for α (Table A.2) 
  zβ = normal tabled value for β (Table A.2) 
  δ2 = minimum detectable level required 
  s2 = MSE (from prior experience) 
 The detection level, δ, can also be determined using the same formula as was 
used in the completely randomized design. 

  ( )
n

zzas βαδ += 2
2

 

 In conclusion, when performing analysis of variance procedures, use your 
microbiological reasoning to drive your decision-making process. Also, plan to keep 
the samples for each group the same. 
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Chapter 5 
Regression and Correlation Analysis 

An important component in microbiological testing is time, usually presented in 
terms of exposure time. A good example is the exposure of microorganisms to cer-
tain topical antimicrobials over discrete time periods to determine the rate of inacti-
vation, known as the D-value, which is the time to reduce the initial microbial popu-
lation by one log10 – that is, a tenfold reduction. 
 A regression analysis is appropriate when two variables, y and x, are related. y is 
termed the dependent variable (population of microorganisms), and x, the independ-
ent variable (an incremental time component). The dependent variable, y, is the 
quantitative measured response when the independent variable, x, is set at various 
levels or points. For example, take the case of a certain microbial population level of 
Staphylococcus aureus, the dependent variable, when exposed to a 10% povidone 
iodine solution for different time intervals, the independent variable. The independ-
ent variable (exposure time) might be set, say, at 10 min, 20 min, and 30 min, and 
the dependent variable, y, is the microbial population counts at the 10-, 20-, and 30-
min points of exposure. Regression analysis “fits” a linear function between the two 
variables, y and x. Suppose that when x = 1, y = 2; when x = 2, y = 4; when x = 3, y = 
6; when x = 4, y = 8; and when x = 5, y = 10. 
 A function of this relationship is graphed (Fig. 5.1). 

 

 
Fig. 5.1 f(x) = Function of y 

© Springer Science + Business Media, LLC 2008 
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5. Regression and Correlation Analysis 

The dots connected by a line is termed the function of x, or f(x). In algebra, the 
function equation is f(x) = m + bx, where m is the f(x) intercept when x = 0. In statis-
tics, the equation, ŷ  = a + bx, is used, where b = rise/run = y2 – y1/x2 – x1 = ∆y/∆x = 
slope of the regression line, ŷ  = predicted value of y, and a = y intercept when x = 0. 
 As in algebra, b has the same basic concept as m, the slope of the regression line, 
except generally, y values corresponding to x values do not result in a perfect linear 
relationship. Hence, b, in statistics, is estimated by the method of least squares. That 
method determines the fit between y and x that produces the smallest error term. This 
will be discussed more fully later. 
 Keeping things simple for the moment, where ŷ  = 2x, the y intercept passes 
through the origin; or when y = 0, x = 0. But most times, the y intercept is not 0, but 
a, when x = 0. Take, for example, ŷ = a + bx, in which a = 3 and b = 0.5. The equa-
tion is ŷ  = 3 + 0.5x. When x = 0 in this equation, y = 3 (Fig. 5.2). When x = 3, ŷ  = 
3 + 0.5(3) = 4.5, and when x = 7, ŷ  = 3 + 0.5(7) = 6.5. 

 Fig. 5.2 ŷ  = 3 + 0.5x function 
 

 However, as previously cautioned, only rarely will the x and y values fit to a 
straight line perfectly, like this example. Instead, both a and b must be estimated by a 
statistical process. An example of such a case is presented in Fig. 5.3. 

 
Fig. 5.3 Collected discrete data points over a time period 
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5.1. Least Squares Equation
 
In this case, the data points vary at each measured x point. 

 What is the slope (rise/run) here? When x = 0, what does y equal? One could take 
a straight edge and try to fit a line through the values, but there is a much more accu-
rate way: the method of least squares, which assures that, of all the different data 
combinations possible, the one calculated produces the smallest overall error term. 

5.1 Least Squares Equation 

The regression procedure begins by calculating the slope, b, using the least squares 
equation. 

  slope = 
∑ −
∑ −= 22 xnx

yxnxyb  

 Next, the y intercept, or a, is calculated: y intercept = xbya −= . 
 Let’s use an example to demonstrate the process (Example 5.1). Suppose the 
following data were collected in a sequential time exposure of 1 × 106 Escherichia 
coli to povidone iodine for 15 s, 30 s, 1 min, and 5 min, three replicates at each time 
point (n = 15). A requirement of linear regression is that the y, x data must have a 
linear relationship, or produce a straight line. In order to do this, all y values have 
been transformed to log10 scale, which is customary in microbiology. We also need 
xy and x2 columns to calculate b (Table 5.1). 

 

Table 5.1 Example 5.1 Data 
 

n y (Colony counts 
[log10 scale]) 

x (Exposure time) xy x2 

1 6.0 0.00 0.000 0.0000 
2 5.8 0.00 0.000 0.0000 
3 6.5 0.00 0.000 0.0000 
4 5.1 0.25 1.275 0.0625 
5 5.2 0.25 1.300 0.0625 
6 5.6 0.25 1.400 0.0625 
7 4.8 0.50 2.400 0.2500 
8 4.7 0.50 2.350 0.2500 
9 5.1 0.50 2.550 0.2500 
10 4.4 1.00 4.400 1.0000 
11 4.6 1.00 4.600 1.0000 
12 4.5 1.00 4.500 1.0000 
13 2.3 5.00 11.500 25.0000 
14 2.1 5.00 10.500 25.0000 
15 2.5 5.00 12.500 25.0000 

 6133.4=y  35.1=x  275.59=∑ xy  9375.782 =∑ x  
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5. Regression and Correlation Analysis 

  ( )( )( )
( ) 6618.0

35.1159375.78
6133.435.115275.59

222 −=
−

−=
∑ −
∑ −=

xnx
yxnxyb  

  ( ) 5067.535.16618.06133.4 =−−=−= xbya  
 So, the regression equation is ŷ = 5.5067 – 0.6618x. When x = 0, the y intercept 
is a, or 5.5067 log10. The slope is expressed as a “b” change on the y axis for one 
increment of change on the x axis. That is, for every minute of exposure, x, the popu-
lation, y, was reduced by 0.6618 log10. The negative sign on 0.6618 means the values 
descend over time. 
 The data evaluated must be linear, forming a straight line, for the equation to be 
valid in predicting the y values, so it is wise to plot the data points and the estimated 
regression line. To check for linearity, one can plot the y, x data with pencil and 
paper or use a statistical software package. We will use the MiniTab software to plot 
the data (Fig. 5.4). Something looks suspicious, because where x = 0, ŷ  is predicted 
to be 5.5067. Yet, when x = 0, the actual data points are 6.0, 5.8, and 6.5, which 
indicates a significant underestimation of the data by the regression equation. 

 

 
Fig. 5.4 Regression plot: Example 5.1, ŷ  = 5.5067 – 0.6618x  

 
 Perhaps the easiest thing to do here to make the regression line more representa-
tive of the data is to drop the x = 0 values. Many times in regression, nonlinear pat-
terns are not as obvious as in Fig. 5.4, so a more precise method of detection must be 
used in conjunction with the y: ŷ  vs. x data plot. That method employs the residual, 
e. The e is merely the difference between the actual y value and the predicted ŷ  
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5.1. Least Squares Equation
 

value; that is, e = y – ŷ . Table 5.2 shows the y, x, ŷ , and e data. When plotted 
against x values, e values should be patternless and centered at 0 (Fig. 5.5). 

 
Fig. 5.5 Scatterplot of e and x, Example 5.1 

 

Table 5.2 Diagnostic regression data values, Example 5.1 
 

n y x ŷ  e = y – ŷ  
1 6.0 0.00 5.47607  0.523934 
2 5.8 0.00 5.47607  0.323934 
3 6.5 0.00 5.47607  1.023930 
4 5.1 0.25 5.31260 -0.212597 
5 5.2 0.25 5.31260 -0.112597 
6 5.6 0.25 5.31260  0.287403 
7 4.8 0.50 5.14913 -0.349128 
8 
9 5.1 0.50 5.14913 -0.049128 
10 4.4 1.00 4.82219 -0.422190 
11 4.6 1.00 4.82219 -0.222190 
12 4.5 1.00 4.82219 -0.322190 
13 2.3 5.00 2.20669  0.093314 
14 2.1 5.00 2.20669 -0.106686 
15 2.5 5.00 2.20669  0.293314 

 Clearly, the e data are not patternless (random about the x values), nor are they 
centered around the e = 0.* 
 

                                                                   
*The entire data set of the e values, when summed equals zero, so as a whole, they are cen-

tered at 0. What are not centered are the yi values for specific xi values. 

4.7 0.50 5.14913 -0.449128 
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5. Regression and Correlation Analysis 

 So, to correct this, the x = 0 data and corresponding values of y are removed from 

ˆ
ŷ  vs. x data from this second iteration are plotted in Fig. 5.6. 

Fig. 5.6 Regression plot with x = 0 values removed: Example 5.1, xy 5989.02538.5ˆ −=  
 
The new regression plot, with x = 0 data, and the corresponding y values re-

moved, shows marked improvement in the linearity of the data. Even so, they are 
certainly not perfect, but rarely will a data set be so. 

The y, x, iŷ , and ei data are presented in Table 5.3. 

Table 5.3 Diagnostic regression data, Example 5.1, without zero-time values 
n y x ŷ  yye ˆ−=  

1 5.1 0.25 5.09644 0.003560 
2 5.2 0.25 5.09644 0.103560 
3 5.6 0.25 5.09644 0.503560 
4 4.8 0.50 4.94778 -0.147784 
5 4.7 0.50 4.94778 -0.247784 
6 5.1 0.50 4.94778 0.152216 
7 4.4 1.00 4.65047 -0.250471 
8 4.6 1.00 4.65047 -0.050471 
9 4.5 1.00 4.65047 -0.150471 
10 2.3 5.00 2.27197 0.028028 
11 2.1 5.00 2.27197 -0.171972 
12 2.5 5.00 2.27197 0.228028 

the data set. A new regression calculation for b and a is performed, providing b = 
– 0.59890, a = 5.2538, and a new regression equation, y = 5.2538− 0.5989x. The y, 
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5.2. Strategy for Linearizing Data
 

5.2 Strategy for Linearizing Data 

The situation just encountered is very common in regression. The data simply do not 
fit a straight line. Fortunately, many data sets can be adjusted by re-expressing the 
scale. Many times, one does not know the correct mathematical re-expression to use. 
Four common data patterns are presented in Fig. 5.7 that can be easily re-expressed 
in a linearized relationship. 

  

  
 

Key Point 
 

Relax; this is not hard. 
         Down x = reduce power scale of x                   Up x = increase power scale of x 
         Down y = reduce power scale of y                   Up y = increase power scale of y 

 
 
 If the actual x, y data look like Graph A, the data can be linearized by decreasing 
the power of either the x or y data, even of both. If the data resemble Graph B, the 
data can be linearized by increasing the power of the x or the y data, even of both. If 
the data resemble Graph C, the data can be linearized by increasing the power of x or 
decreasing the power of y. If the data resemble Graph D, they can be linearized by 
increasing the power of y or decreasing the power of x. 

Fig. 5.7 (a–d) Four common data patterns 
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5. Regression and Correlation Analysis 

5.3 The Power Scale 

 Power x y re-expression 
    
 3 x3 y3 

 2 x2 y2 
neutral→ 1 x1 y1 

 ½ x  y  
 0 log x log y 

 –½ 
x
1−  

y
1−  

 –1 x
1−  y

1−  

 –2 2
1

x
−  2

1
y
−  

 –3 3
1

x
−  3

1
y
−  

    
 
 Up in power is >1, and down in power is <1. All one needs to do is iteratively 
pick a power, transform the data using the power re-expression, and then replot to 
determine visually if the data appear to be linear.  
 Generally, it is better to transform the y data, instead of the x values. This is be-
cause, when reporting the data, it is often harder for the reader to comprehend the 
data when the x values are transformed than when the y data are transformed. 

5.4 Using Regression Analysis

Usually, a microbiologist wants not only to model a data set, but also, to predict y 
values (response values) based on one or more x values with confidence that the 
predicted values are close to the measured values. There are two basic approaches 
for this process: one is to calculate a 100 (1 – α) confidence interval for the average 

ŷ
the specific ŷ  value predicted. Although ŷ  and ŷ  will be the same value, the width 
of the 100 (1 – α) confidence interval on each will differ. A confidence interval on 
y , on the average, is narrower than is a confidence interval on a specific value. 

Predictions, when using either of these approaches, should avoid extrapolation; that 
is, predicting y values outside the range of the collected x data points. Why? It is 
because the data may not be linear beyond the data set collected. Most ŷ  response 
predictions will be interpolated values within the range of the x values, and not nec-
essarily an x value used to produce the regression equation (Fig. 5.8). 
 

 ( ) of the y values predicted, and the other is a 100 (1 – α) confidence interval for 
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5.5. Predicting the Average ŷ  From an x Value 
 

 
Fig. 5.8 Extrapolation and interpolation of regression data 

5.5 Predicting the Average ŷ  from an x Value 

This is the more commonly used of the two prediction processes. First, bxay +=ˆ  is 
determined from the data set. Second, the value of an x used to predict the y value  
is plugged in the regression formula to predict .ŷ  Third, a 100 (1 – α) confidence 
interval is constructed around the .ŷ  The 100 (1 – α) confidence interval formula is 

yn sty 2,2ˆ −± α , where 

  ( ) ( )
( ) ⎥⎦

⎤
⎢
⎣

⎡
∑ −

−+
−

∑ −= 2

22 1
2
ˆ

xx
xx

nn
yysy . 

 Let us use the data in Example 5.1 without the 0 time points, as presented in 
Table 5.3 (repeated here for convenience). 

 

Table 5.3 Diagnostic regression data, Example 5.1, without zero-time values 
n y x ŷ  yye ˆ−=  

1 5.1 0.25 5.09644 0.003560 
2 5.2 0.25 5.09644 0.103560 
3 5.6 0.25 5.09644 0.503560 
4 4.8 0.50 4.94778 -0.147784 
5 4.7 0.50 4.94778 -0.247784 
6 5.1 0.50 4.94778 0.152216 
7 4.4 1.00 4.65047 -0.250471 
8 4.6 1.00 4.65047 -0.050471 
9 4.5 1.00 4.65047 -0.150471 
10 2.3 5.00 2.27197 0.028028 
11 2.1 5.00 2.27197 -0.171972 
12 2.5 5.00 2.27197 0.228028 

 

ŷ ŷ
0.5989(3) = 3.4612. 

 = 5.2538 – Recall that  = 5.2538 – 0.5989x. Let us predict y when x = 3 min. 
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5. Regression and Correlation Analysis 

 Next, we compute the 1 – α confidence interval on the average ŷ  when x = 3. 
Let us use α = 0.05 for a confidence interval of 95%. 
  ( ) yn sty 2,2ˆ −±= αµ  
  ( ) ( ) 228.210,025.0212,205.0 ==− tt , from Table A.1 (the Student’s t table). 

  ( ) 0541.0
10
5410.0

2
ˆ 2

==
−

∑ −
n

yy  

  ( ) ( ) ( ) ( ) ( )22222 6875.100.56875.100.56875.125.06875.125.0 −+−++−+∑ −=∑ − …xx

  ( ) 7656.442 =∑ − xx  

  ( ) ( )
( )

( )
⎥
⎦

⎤
⎢
⎣

⎡ −+=⎥
⎦

⎤
⎢
⎣

⎡
∑ −

−+
−

∑ −=
7656.44

6875.10.3
12
10541.01

2
ˆ 2

2

22

xx
xx

nn
yys i

y  

  0812.0=ys  
  tŷ ±=µ
  ( )0812.0228.24612.3 ±=µ  
  6422.32803.3 ≤≤ µ  
  64.328.3 ≤≤ µ  
 So, when predicting the true average, µ, from x = 3, 95 out of 100 times, it will be 
contained within the interval, 3.28 ≤ µ ≤ 3.64 at α = 0.05. 

5.6 Predicting a Specific y  Value from an  Value 

The prediction of a specific ŷ  value is similar to the prediction of iŷ , an average 
value. The first step is to compute the regression equation, bxay +=ˆ . Next, choose 
the x from which to predict ŷ . Let us use x = 3. 
  ( ) 4612.335989.02538.5ˆ =−=y . 
 The prediction 100 (1 – α) confidence interval is ( ) yn styY 2,2ˆ −±= α , where 

( ) ( )
( ) ⎥⎦

⎤
⎢⎣

⎡
∑ −

−++
−

∑ −= 2

22 11
2
ˆ

xx
xx

nn
yysy . 

 The difference between ys  and ys  is that the 1 is added to (1/n + (x – 2x ))/Σ(x – x )2 
in predicting sy. This is because, in predicting a specific ŷ  value, the confidence 
interval will be greater than for predicting an average ŷ . Let us set α = 0.05 and 
t(0.05/2, 10) = 2.228, as before. 

 ( ) 2464.0
7656.44

6875.10.3
12
110541.0

2

=⎥
⎦

⎤
⎢
⎣

⎡ −++=ys  

 ( ) yn styY 2,2ˆ −±= α  
 ( )2464.0228.24612.3 ±=Y  

ˆ x

( ) yn s2,2 −α  
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5.7. Correlation 
 
So, 95 out of 100 times, when predicting a ŷ  value from x = 3, the actual ŷ  

value will be contained within the interval, 01.491.2 ≤≤Y  at α = 0.05. This is 
clearly wider than µ, 64.328.3 ≤≤ µ , because there is more uncertainty predicting a 
specific value, Y, than predicting the true average value, µ. 

5.7 Correlation

Directly related to regression analysis is correlation. Correlation measures the degree 
to which two variables are related or associated. For example, take the equation, 

xy 21ˆ += . Table 5.4 presents xi and yi values, as well as iŷ  and ei values. Notice 
yy ˆ=  in every case, so ei = 0 in every case. There is no variability or error. 

Table 5.4 Correlation of xi and yi values 
 

x y ŷ  e=y- ŷ  
1 3 3 0 
2 5 5 0 
3 7 7 0 
4 9 9 0 
5 11 11 0 
6 13 13 0 

 
 Plotting this equation results in perfect correlation (Fig. 5.9). 

 
Fig. 5.9 Perfect correlation of data 

 
 Perfect correlation occurs when the predicted ŷ s and the actual ys are the same 
value, so 0ˆ =− yy . Perfect correlation is 1. Conversely, when there is no relation-
ship between the predicted ŷ  and the actual y values, bxay +≠ˆ ; instead, yy =ˆ  
(Fig. 5.10). 
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5. Regression and Correlation Analysis 

 
Fig. 5.10 Random data points 

 
 Here, there is only a series of random points, so the correlation is 0. The value, 
y , is then used to represent the data, because there is no slope. 

 Correlation is a very useful tool in regression, telling how well the predicted 
regression line function, ŷ , explains the yi data (Fig. 5.11). Fig. 5.11a shows data 
that have stronger correlation than those in Fig. 5.11b. 

 
Fig. 5.11 Correlation in regression 

5.8 Correlation Coefficient: r 

The most widely used value in correlation analysis is the correlation coefficient, r. 
The r value ranges between –1 and +1, negative if the regression slope is negative, 
and positive if the regression slope is positive (Fig. 5.12). 

 
Fig. 5.12 Negative and positive correlation 
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 This simply means that r is negative if the y values get smaller as the x values get 
larger (Fig. 5.12a), and r is positive if the y values gets larger as the x values get 
larger (Fig. 5.12b). The closer the value of r is to –1 or 1, the stronger the relation-
ship between the y and x values is. The closer the r value is to 0, the weaker the rela-
tionship is. The correlation coefficient is calculated as: 

  
( )( )

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
∑ ∑−⎥⎦

⎤
⎢⎣

⎡
∑ ∑−

∑∑−∑
=

n
yy

n
xx

n
yxxy

r
2

2
2

2

. 

 
n = 15 values, and then with an n of 12 values, with the y values corresponding to the 
xi = 0 removed (Table 5.5). 

Table 5.5 Diagnostic regression data, Example 5.1 
 

n y x xy y2 x2 
1 6.0 0.00 0.000 36.0 0.000 
2 5.8 0.00 0.000 33.64 0.000 
3 6.5 0.00 0.000 42.25 0.000 
4 5.1 0.25 1.275 26.01 0.062 
5 5.2 0.25 1.300 27.04 0.062 
6 5.6 0.25 1.400 31.36 0.062 
7 4.8 0.50 2.400 23.04 0.250 
8 4.7 0.50 2.350 22.09 0.250 
9 5.1 0.50 2.550 26.01 0.250 
10 4.4 1.00 4.400 19.36 1.000 
11 4.6 1.00 4.600 21.16 1.000 
12 4.5 1.00 4.500 20.25 1.000 
13 2.3 5.00 11.500 5.29 25.000 
14 2.1 5.00 10.500 4.41 25.000 
15 2.5 5.00 12.500 6.25 25.000 

∑ = 2.69y 25.20=∑ x 275.59=∑ xy 16.3442 =∑ y 94.782 =∑ x
 

( ) ( )

( ) ( )
⎥⎦

⎤
⎢⎣

⎡ −⎥⎦

⎤
⎢⎣

⎡ −

−
=

15
2.6916.344

15
25.2094.78

15
2.6925.2028.59

22
r  

( )( )
95.0

86.35
14.34

92.2460.51
14.34 −=−=−=  

 A negative sign is placed before 0.95, because r carries the sign of b, which is 
−0.6618. This is a relatively high correlation, in that the value, r, is close to –1. 
 Now let us see what happens when the xi = 0 values are removed, as well as the 
corresponding yi values? We already know they are adding variability to the regres-
sion line not being exactly linear (see Fig. 5.4). Table 5.6 presents those summary 
data. 

5.8. Correlation Coefficient: r

Let us perform the calculation of r using the data in Example 5.1, both with the 

A negative value is assigned to r, referring to the regression slope, b, being negative. 
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5. Regression and Correlation Analysis 

Table 5.6 Diagnostic regression data, Example 5.1, without zero-time values 
 

n y x xy y2 x2 
1 5.1 0.25 1.275 26.01 0.062 
2 5.2 0.25 1.300 27.04 0.062 
3 5.6 0.25 1.400 31.36 0.062 
4 4.8 0.50 2.400 23.04 0.250 
5 4.7 0.50 2.350 22.09 0.250 
6 5.1 0.50 2.550 26.01 0.250 
7 4.4 1.00 4.400 19.36 1.000 
8 4.6 1.00 4.600 21.16 1.000 
9 4.5 1.00 4.500 20.25 1.000 

10 2.3 5.00 11.500 5.29 25.000 
11 2.1 5.00 10.500 4.41 25.000 
12 2.5 5.00 12.500 6.25 25.000 

 9.50=∑ y  25.20=∑ x  275.59=∑ yx  27.2322 =∑ y  94.782 =∑ x  
 

( )( )

( ) ( )
⎥⎦

⎤
⎢⎣

⎡ −⎥⎦

⎤
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⎡ −

−
=

12
9.5027.232

12
25.2094.78

12
9.5025.2028.59

22
r  

( )( )
98.0

07.27
61.26

37.1677.44
61.26 −=−=−=  

 Again, a negative value is assigned to r, because b is a negative number. 
 The value of r = –0.98 represents very high negative correlation. That is, the 
regression slope descends (y data become smaller as the x increases). Yet, how does 
one actually interpret r, other than whether it is closer to 1 or 0? What does an r of 
0.88 or 0.92 signify? Nothing – except that 0.92 is larger than 0.88. To make a more 
specific determination, we need to use the value, r2, known as “the coefficient of 
determination.” 

5.9 Coefficient of Determination: r2

The coefficient of determination, r2, is an expression more useful than the correlation 
coefficient, r, because it can be interpreted directly. An r2 = 0.90 means that 90% of 
the data variability can be explained by the regression equation. This is very valuable 
to know. In the previous example, where r = –0.96, r2 = 0.92, meaning only 92% of 
the variability in the data was explained by the regression equation. When the xi = 0 
values are omitted from the equation, r = –0.98, and r2 = 0.96. This means that 96% 
of the variability in the data is explained by the regression equation. The r2 is always 
a positive value. 
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5.10. Predicting an x Value from a y Value
 

5.10 Predicting an x Value from a y Value

There are times when a microbiologist will find it advantageous to predict x from a y. 
For example, in time-kill kinetic studies, often one wants to know the time it will 
take to kill a certain number of bacteria, fungi, or viruses. This process is called the 
D-value determination. This is just the reverse of what we have done in the previous 
sections of this chapter, where we estimated y values based on x values. Now we 
estimate x values from y values. 
 The computational procedure is straight-forward. First, one determines the re-
gression parameters, a and b, as before, via the regression equation ŷ  = a + bx. Once 
the regression equation has been determined, one rearranges the terms in the equa-
tion to predict x̂ : ( ) bayx /ˆ −= . By itself, the x̂  value predicted is only partially 
useful, so construction of a 100(1 – α) confidence interval is also recommended. The 
100(1 – α) confidence interval is of the form, ( ) xn stx 2,2ˆ −± α . For estimates of a specific 
x value from a specific y value, sx is computed as 

  ( )
( ) ⎥⎦
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2 11
xx
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x̂ xs  is computed as 
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ssx . 

 Let us look at an example, Example 5.2. Suppose a microbiologist exposes  
1 × 107 Bacillus subtilis spores to a high level disinfectant for set times to determine 
a lethality curve and, from that, wants to predict exposure times required to kill  
specific inoculation levels of spores. The collected data are presented in Table 5.7. 

 

Table 5.7 Collected data, Example 5.2 
n Exposure time (x) Log10 colony counts (y) 
1 0 1.0 × 107 

2 0 1.0 × 107 

3 0 1.0 × 107 

4 1 5.31 × 106 
5 1 6.21 × 106 
6 1 9.98 × 106 
7 2 6.15 × 105 
8 2 5.35 × 105 
9 2 3.98 × 105 

10 3 7.21 × 104 
11 3 1.09 × 105 
12 3 5.35 × 104 
13 4 6.73 × 103 
14 4 5.98 × 103 
15 4 4.79 × 103 
16 5 6.21 × 102 
17 5 5.81 × 102 
18 5 7.99 × 102 

For the estimation of the average  value from a specific y value, 
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5. Regression and Correlation Analysis 

 The yi values, in scientific notation, must be linearized by log10 transformation 
(Table 5.8), and a and b values estimated to attain the regression equation, 

bxay +=ˆ . 

Table 5.8 Log10 transformed data, Example 5.2 
 

Row x y Log10 ya 
1 0 10000000 7.00000 
2 0 10000000 7.00000 
3 0 10000000 7.00000 
4 1 5310000 6.72509 
5 1 6210000 6.79309 
6 1 9980000 6.99913 
7 2 615000 5.78888 
8 2 535000 5.72835 
9 2 398000 5.59988 

10 3 72100 4.85794 
11 3 109000 5.03743 
12 3 53500 4.72835 
13 4 6730 3.82802 
14 4 5980 3.77670 
15 4 4790 3.68034 
16 5 621 2.79309 
17 5 581 2.76418 
18 5 799 2.90255 

 45=∑ x   00302.93=∑ y  

   alog10 y, from now on, will be designated y. 

  16683.5
18
00302.93 ==∑=

n
yy  

  5.2
18
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xx  

  
∑ −
∑ −= 22 xnx

yxnxyb  

  ( ) ( ) ( ) ( ) 0620.18690255.2576418.25...7070 =⋅+⋅++⋅+⋅=∑ xy  

  000.165555...000 2222222 =++++++=∑ x  

  ( )
( ) 8874.0

5.218165
17.55.218062.186

2 −=
−
−=b  

  8874.0−=b  
  xbya −=  

  ( )( )5.28874.016683.5 −−=a  
  38533.7=a  
 So,  xbxay 887.039.7ˆ −=+=  

 Next, rearrange the regression terms to find x̂ . 
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−=−= y

b
ayx  
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5.11. Confidence Interval for a Specific x̂
 

 Suppose the microbiologist wants to predict the specific time, x̂ , where y = 6, 
with a 95% confidence interval. 

  57.1
887.0

39.76ˆ =
−
−=x  min exposure 

5.11 Confidence Interval for a Specific 

  ( ) xn stx 2,2ˆ −± α  

  ( )
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⎤
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⎡
∑ −

−++= 2

2

2
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xx
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2
ˆ 2

2
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 To perform this calculation, we need to know what the iŷ  and ( )2ŷy −  values 
are. Table 5.9 provides these values. 

Table 5.9 x , ŷ , yy ˆ− , and ( )2ŷy −  values, Example 5.2 
 n x y ŷ  y – ŷ  ( )2ŷy −  

1 0 7.00000 7.38533 –0.38533 0.14848 
2 0 7.00000 7.38533 –0.38533 0.14848 
3 0 7.00000 7.38533 –0.38533 0.14848 
4 1 6.72509 6.49793 0.22716 0.05160 
5 1 6.79309 6.49793 0.29516 0.08712 
6 1 6.99913 6.49793 0.50120 0.25120 
7 2 5.78888 5.61053 0.17835 0.03181 
8 2 5.72835 5.61053 0.11782 0.01388 
9 2 5.59988 5.61053 –0.01065 0.00011 
10 3 4.85794 4.72313 0.13481 0.01817 
11 3 5.03743 4.72313 0.31430 0.09878 
12 3 4.72835 4.72313 0.00522 0.00003 
13 4 3.82802 3.83573 –0.00771 0.00006 
14 4 3.77670 3.83573 –0.05903 0.00348 
15 4 3.68034 3.83573 –0.15539 0.02415 
16 5 2.79309 2.94833 –0.15524 0.02410 
17 5 2.76418 2.94833 –0.18415 0.03391 
18 5 2.90255 2.94833 –0.04578 0.00210 

     ( ) 08594.1ˆ 2 =∑ − yy  

  ( ) 06787.0
218
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5. Regression and Correlation Analysis 

  ( ) xn stx 2,2ˆX −±= α  
   ( ) ( ) 12.216;025.0218;205.0 ==− tt  (Table A.1) 
   ( )304.012.257.112.2ˆ ±=± xsx  
  21.2X93.0 ≤≤  
 So, the spore population can be taken down 6 log10 with an exposure of 0.93–
2.21 min. In practice, the microbiologist would use an exposure time greater than 
2.21 min. 

5.12 Confidence Interval for the Average  Value

The only thing that needs to be recalculated is xs . 
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  ( ) ( )0788.012.257.1ˆ 2,2 ±=±= − xn stx αµ  
  74.140.1 ≤≤ µ  at 05.0=α . 
 On the average, a 6.0 log10 population reduction would be achieved after an  
exposure between 1.40 and 1.74 min. 

5.13 D-Value Calculation 

The D value is defined as the time required to reduce an initial microbial population 
by 1 log10. That value is simply b1 . The b value for this example is –0.887. 

  13.1
887.0
1 =

−
=D  min 

The confidence intervals are exactly as computed for the specific x and average x 
values. 
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Chapter 6 
Qualitative Data Analysis 

6.1 Binomial Distribution 

In many instances, microbiologists collect data that are binary. That is, data can 
occur in one of two possible outcomes, such as 0/1, +/–, growth/no growth, or 
pass/fail. The frequencies of each outcome are tabulated, relative to the number of 
trials, providing a data set ranging from 0 to 1.0. For example, let’s take the number 
of trypticase soy broth tubes that are positive (+) for microbial growth over a 72-h 
incubation. Suppose ten tubes were used, and eight tubes were positive for growth. 
Then the proportion of positive growth is the number of positives ÷ total number = 8 
÷ 10 = 0.80. The value, “p,” is usually designated as the proportion of successes, in 
this case, positive (+) growth. The proportion of no-growth can also be calculated. 
The proportion of no-growth is q = 1 – p, or 1.0 – 0.80 = 0.20. Incidentally, what one 
terms “success” and “failure” is arbitrary. 
 There are many applications appropriate to using the binomial distribution, such 
as contingency tables to determine association in two-sample sets, but for microbi-
ologists, probably the most practical application is using binary data to compute 
proportions (e.g., of successes or failures), which can then be represented in terms of 
the normal distribution. This makes analysis of binomial data a process to which we 
can apply methods already discussed. 
 The mean and standard deviation of a binomial data set are used to approximate 
the normal distribution. Two versions are used – one for estimating the actual events, 
and the other for estimating proportions. 

successes = np. In the above example, if n = 10 and p = 0.80, the average or expected 
 n, and vise-versa, number of 

6.1.1 Version I: Mean, Variance, and Standard Deviation Estimates  
for Predicting Outcome Events 
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,D.S. Paulson Biostatistics and Microbiology, doi: 10.1007/978-0-387-77282-0_6, 

=

101

 p = proportion of successes = number of successes 
The true population mean, π, is estimated by p. Where n number of trials, the mean = 



number of successes = np = 10(0.80) = 8, or 8 tubes. The variance of this data set is 
estimated as s2 = npq, and the standard deviation as s = npq . 
 In our example, where n = 10 tubes, p = 0.80 successes, and q = 1 – p = 1 – 0.8 = 
0.20 failures, the variance is s2 = 10(0.80)(0.20) = 1.6, or 1.6 tubes. The standard 
deviation is 26.16.1 ==s , or 1.26 tubes. 

The true population mean, π, is estimated by p, or proportion of successes: π = p = 
number of successes ÷ number of trials = 8 ÷ 10 = 0.80, as in our earlier example. 
The variance, s2, is estimated as p(1 – p) = 0.80(0.2) = 0.16. The standard deviation, 
s, is estimated by ( )pp −1 , and the standard error of the mean, xs , by 

( ) nppsx −= 1 . 
 It is important to bear in mind that binomial, or categorical data are nominal data. 
That is, these data do not carry numerical values that can be ranked, but only differ-
entiated. They signify the degree of one outcome, termed proportion of successes, 
out of two possible outcomes, success or failure. For example, an inoculated broth 
tube may be positive for growth of Staphylococcus aureus, and that growth may 
range from 1 to 109 microorganisms, but all we can do is state “growth” or “no 
growth.” Hence, nominal data are weaker than ordinal data (values that can be 
ranked) and much weaker than interval-ratio data. This means larger sample sizes are 
required to have statistical power comparable to those tests employing interval-ratio 
data. Fortunately, many times, it is easier to collect large samples of binary data than 
of interval-ratio data. 

6.2 Confidence Interval Estimation 

The 100(1 – α) confidence interval for a binomial data set using a normal distribution 
approximation is: 

  ( )
n

ppzp −±= 1
2απ  

where π is the population value of the proportion of successes. 
 We will use the normal distribution z table, because the Student’s t table custom-
arily is not used with binomial data. However, in order to use the z table, there are 
two restrictions that should be met: np ≥ 5 and nq ≥ 5. Let’s look at an example. 
 
 Example 6.1. A microbiologist performed a minimum inhibitory concentration 
(MIC) test using Staphylococcus aureus (MRSa) to challenge a new synthetic β-
lactamase-resistant antibiotic. Fifty (50) tubes were used to measure growth/no 
growth at each dilution level. At a dilution level of 32:1, there were 15 positive tubes 
and 35 negative tubes. 
  30.05015 ==p  = proportion of successes (no growth) 
  70.01 =−= pq  = proportion of failures (growth) 

6. Qualitative Data Analysis 

6.1.2 Version II: Mean, Variance, and Standard Deviation Estimates  
for Predicting Proportions or Percentages 
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of successes at α = 0.05 for Type I error. From Table A.1, zα/2 = z0.05/2 = 1.96 . 
 

Key Point 
 
 

 
* The normal distribution uses only 0.5 of the curve. For example, suppose α = 
0.01. The α/2 value, 0.01/2 = 0.005, is subtracted from 0.5, or 0.5 – 0.005 = 
0.4950. From the z Table (Table A.2), one locates the 0.4950 value, or the value 
closest to it, which, in this case, is 0.4949. Follow the row where 0.4949 resides to 
the value farthest to the left (2.5), which represents the first portion of the z value. 
Moving up the column from 0.4949, one finds the value 0.07, the second compo-
nent of the z value. Putting both values together, the z value is 2.5 + 0.07 = 2.57. 

 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

1.3          
1.4          
1.5          
1.6          
1.7          
1.8          
1.9          
2.0          
2.1          
2.2          
2.3          
2.4        

 

  
2.5  0.4949   
2.6           
2.7           
2.8           

 For α = 0.05, z = 1.96. 

  ( ) ( )( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±=−±

50
70.030.096.130.01

2 n
ppzαπ  

  127.030.0 ±=  
 The 95% confidence interval for the population proportion of successes is: 
  427.0173.0 ≤≤π  
 Remember to check for the appropriateness of using the z table.  
  ( ) 1530.050 ==np  > 5, and nq = ( ) ( ) 3570.0501 ==− pn > 5 
 Both np and nq are greater than 5, so the z table is okay to use. 
 From the proportions of the high and low ends of the confidence interval, one can 
easily convert to actual outcome values. For example, if one expects the same  

The z Table uses only 
one side of the symmet-
ric normal curve. 

6.2. Confidence Interval Estimation

The microbiologist wants to construct the confidence interval for the proportion 
*

Using the z Table is Easy! This is for two-tail tests 
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proportion to hold for other evaluations, and one cultures 275 tubes, how many will 
be positive? This can be calculated by using the proportion data from the 95% confi-
dence interval just computed. 
 The lower 95% confidence interval is 0.173, and the upper boundary is 0.427. 
The mean value, pn, is 0.30 (275) = 82.5. That is, about 83 tubes, on the average, 
will be negative. The lower boundary is simply the lower proportion, pL, times n, or 
pLn, = 0.173 (275) = 47.58, and the upper boundary is pUn = 0.427 (275) = 117.42. 
The 95% confidence interval estimate for the actual occurrences, then, is 47 ≤ π ≤ 
118. Hence, one would expect the true average to be contained in the interval,  
47–118, 95% of the time. 
 

Key Point 

Note on Confidence Intervals  
There are times when one will use the binomial distribution, and p will be very 
close to 0 or 1; other times, p will be closer to 0.5. Two different approaches to the 
confidence interval estimation process are necessary for these situations. 

In the above example, p = 0.30 is relatively close to 0.5, so many statisticians 
suggest using a Yates adjustment factor, which is ± 1/2n. 
 

  ( )
nn

ppzp
2
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2 ±−±= απ  

  ( ) ( )
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ppzp
nn
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 Using data from Example 6.1, 

  p = 0.30, q = 1 – p = 0.70, ( ) ( ) 0648.0
50

70.030.01 ==−=
n

ppsx , 

96.1205.02 == zzα  (Table A.2), and ( ) ( ) 01.0
502
1

2
1 ==
n

. 

  ( ) ( ) 437.001.00648.096.130.0
2
11

2 =++=+−+
nn

ppzp α  

  ( ) ( ) 183.001.00648.096.130.0
2
11

2 =−−=−−−
nn

ppzp α  

 The 100(1 – α), or 100(1 – 0.05) = 95% confidence interval is 0.183 ≤ π ≤ 0.437 
at α = 0.05. 

When p or q values are close to 0 or 1, the p value should be assigned the value  
nearest to 0, so the Poisson distribution, or the rare event statistic, is used. Note that 

6. Qualitative Data Analysis 

(Not Close to 0 or 1): The Yates Adjustment 
6.2.1 Confidence Intervals on Proportions that are not Extreme 

6.2.2 Confidence Intervals on Proportions that are Extreme (Close to 0 or 1) 
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when p is close to 0, q will be close to 1, and when p is close to 1, q will be close to 

0. The 100(1 – α) confidence interval is 
n
pzp 2απ ±= . 

 Example 6.2. A microbiologist working on a Homeland Security project for de-
veloping a handheld device for detection of Bacillus anthracis spores evaluated the 
ability of the device to detect the spores in visible powders from five different sur-
faces types. The overall correct detection level was 997 correct ÷ 1000 trials = 0.997. 
Hence, p = 0.997, and q = 1 – 0.997 = 0.003. In this case, p and q are interchanged in 
order to use the Poisson distribution. Hence, p = 0.003. Compute a 99% confidence 
interval (α = 0.01). 

  
n
pzp 2απ ±=  

  00173.0
1000

003.0 ==
n
p , and 57.2005.0201.0 == zz  (from Table A.2). 

  
1000

003.057.2003.02 ±=±=
n
pzp απ  

 This gives 00445.0003.0 ± , or 00745.000145.0 ≤≤− π . The 99% confidence 
interval is 0 ≤ π ≤ 0.007.  
 The interval, 0 ≤ π ≤ 0.007 is the 99% confidence interval for not detecting B. 
anthracis spores when they are present. This is more commonly known as the false 
negative rate. To convert back to p = success, simply subtract the lower and upper 
confidence interval points from 1 and reverse the order. In other words, confidence 
interval lower becomes confidence interval higher. 
  1 – 0 = 1, and 1 – 0.007 = 0.993 
  0.993 ≤ πsuccess ≤ 1.0 
 The evaluation would most than likely focus on the lower confidence point being 
0.993, or 99.3% correct identification with an expected level of 0.997 or 99.7%. 

6.3 Comparing Two Samples 

There are occasions when a microbiologist may want to compare two binomial sam-
ple sets. In previous chapters, we examined comparisons of a sample set to a stan-
dard value, and of two samples for a difference – a one-tail or two-tail test. Let us 
now look at the first case, as it applies to binomial data. 

It is straightforward to compare a sample proportion to a standard value. To perform 
this, we use the form: 

                                                            
Because the confidence interval is negative, 0 is used; the low-end value cannot be less than 0. 

6.3. Comparing Two Samples

*

*

6.3.1 Proportions: One Sample Compared to a Standard Value 
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( )

n
pp

spzc
−
−=

1
&  

where p = proportion of successes,  xi /n (xi = successes), n = number of trials, s&  = 
standard value, and zc = calculated normal value, which will be compared to a value 
from the normal z distribution (Table A.2). 
 
 Example 6.3. In an EPA hard-surface disinfectant test, the penicylinders used for 
testing must yield from their surfaces at least 1.0 × 105 colony-forming units (CFUs) 
per penicylinder. A microbiologist wants to know if a test product can kill all of the 
challenge microorganisms within 1 h of exposure. In order to do this, only 0.01, or 
1% of the penicylinders can test positive for growth following product exposure. The 
microbiologist will conduct a pilot disinfectant study using 35 inoculated penicyl-
inders to decide if a full study is warranted. 
 

Key Point 
 

Design of this study can be addressed using the six-step procedure. 
 

 
 Step 1. Formulate the hypothesis. 
 In this study, the proportion of positives can be no more than 0.01, or 1% (this is 
noted as s& , for standard proportion). Hence, we need a study that does not exceed 
0.01, so it is an upper-tail test. 
  H0: Proportion of positives ≤ 0.01 
  HA: Proportion of positives > 0.01 
 Step 2. Select the sample size and α level. 
 We do not know what the test sample size should be for certain. However, the 
microbiologist believes the sample size of n = 35 is adequate. The microbiologist 
sets α = 0.05. 
 Step 3. Write out the test statistic. 
  When np > 5, the test statistic is: 

   
( )

n
pp

spzc
−
−=
1

&  

where p = observed proportion of positives, s&  = standard “tolerance” limit of posi-
tives, and n = sample size. 

 If np >/  5, 

n
p
spzc
&−= . 

 Step 4. State the acceptance/rejection rule. 
 Because this is an upper-tail test, if zc > zt, reject H0 at α (Fig. 6.1). Here, α = 
0.05. Because this is not a two-tail test, we do not divide α by 2; we simply subtract 
0.05 from 0.5. The result, 0.45, in Table A.2, is about zt = 1.64. So, we reject H0 if  
zc > 1.64. 
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Fig. 6.1 Upper-tail test, Example 6.3, Step 4 

 Step 5. Conduct the experiment. 
 The microbiologist gets three positives out of 35.  
  p = 3/35 = 0.086, 1 – p = 0.914, and n = 35. 

  
( )

6037.1

35
914.0086.0
01.0086.0 =−=cz  

 Step 6. Make the decision. 
 Because zc = 1.60 < zt = 1.64, one cannot reject H0 at α = 0.05. 
 The microbiologist notes that the actual number of positives was proportionally 
greater than 0.01. Even though there is not enough evidence to reject H0 and claim 
that the rate of positives does not exceed 0.01, concluding this without caution would 
be foolish. Furthermore, the microbiologist realizes that np is not greater than 5, so 
the Poisson distribution should have been used for the calculation. 
That calculation is 

  

n
p
spzc
&−=  = 53.1

35
086.0

01.0086.0 =−  

This did not solve the microbiologist’s quandary, because using the Poisson calcula-
tion makes the statistic more conservative, i.e., it is more difficult to reject H0. 
 

The test could also be conducted using a 95% confidence interval, as described 
previously. Here, because p is close to 0, so we will use the Poisson version. The 
confidence interval approach uses a two-tail analysis: npzp 2απ ±=  and α/2 = 
0.05/2 = 0.025. 
 Using Table A.2, subtracting α/2 from 0.5 = 0.5 – 0.025 = 0.475. The zt value in 
Table A.2 = 1.96.  
  35086.096.1086.0 ±=π  
  1832.00112.0 ≤≤− π  
 Because we cannot have a negative proportion, we use zero. 
  183.00 ≤≤π , as diagrammed in Fig. 6.2. 

6.3. Comparing Two Samples

6.3.2 Confidence Interval Approach 
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Fig. 6.2 Confidence interval approach diagram 

 
 Because the confidence interval, 0–0.183, includes the standard, 0.01, one cannot 
reject H0 at α. Yet, the better way to use this interval is to see that the upper bound 
well exceeds s&  = 0.01. In fact, the model would call 18% positive not significant. 
This should concern the microbiologist, in that the test product will not pass the EPA 
requirement, 0.01 positives, for a hard-surface disinfectant. Hence, the microbiolo-
gist would probably want to see an upper limit on the 1 – α confidence interval that 
does not exceed 0.01. 
 

Key Points 
Process for Comparing One Sample to a Standard 

Step 1. Write out the hypotheses. 
 Lower-Tail Upper-Tail Two-Tail 
 H0: pc ≥ s&  H0: pc ≤ s&  H0: pc = s&  
 HA: pc < s&  HA: pc > s&  HA: pc ≠ s&  
 where pc = pcalculated and s&  = standard or tolerance proportion 
Step 2. Set n and α. 
Step 3. Write statistical formula. 

           
( )

n
pp

spz c
c

−
−=

1
& , where pn > 5; if pn >/  5, 

n
p

spz c
c

&−=  

 
Step 4. Write the decision rule. 
 

   
 If –zc < zt, reject H0 at 
α. 
Using the z table, 0.5 – 
α, then find zt, which 
will be a negative 
value. 

If zc > zt, reject H0 at α. 
Using the z table, 
0.5 – α, then find zt, 
which will be a positive 
value. 

If zc > zt at α/2 or –zc < –
zt at α/2, reject H0 at α. 

Using the z table, 0.5 – 
α/2, then find zt, which 
will take both positive 
and negative values. 

Step 5. Perform the experiment. 
Step 6. Make the decision. 

6. Qualitative Data Analysis 
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6.4 Comparing Two Sample Proportions 

A two-sample proportion test is a very useful statistic when the collected data are 
nominal scale. The two samples are designated Group 1 and Group 2, and the sample 
proportions, p1 and p2, are calculated: p1 = (number of successes for group 1) ÷ 
(number of trials for group 1), and p2 = (number of successes for group 2) ÷ (number 
of trials for group 2). 
 Next, the two proportions are combined to give a pooled value, or pp. 
  ( ) ( )

( ) ( )2groupfortrialstotal1groupfortrialstotal
2groupforsuccessesofnumber1groupforsuccessesofnumber

21

2211

+
+=

+
+=

nn
pnpnpp

 

 Then, the pooled standard deviation is estimated: 
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 Finally, the test statistic, zcalculated, is computed as: 

  
( ) ⎟

⎠
⎞

⎜
⎝
⎛ +−

−=

21

21

111
nn

pp

ppz
pp

c , when np > 5. 

 In this case, both n1p1 and n2p2 must be greater than 5. If not, use the formula: 
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 Example 6.4. In developing a diagnostic test device to detect >102 CFU Es-
cherichia coli (O157/H7) per gram of hamburger meat (40% fat), two sampling card 
readers have been developed. Card Reader 1 is less expensive to purchase than Card 
Reader 2, so unless Card Reader 1 is less sensitive than Card Reader 2, it will be 
selected for use. Two dilutions of the ground meat will be tested, and the dilution 
that provides proportional values closest to 0.5 will be used for comparative analysis. 
 Step 1. State the hypotheses. 
 In this evaluation, the microbiologist wants to make sure that Card Reader 1 does 
not have more error in detecting E. coli than does Card Reader 2. Let p = correct 
detection for O157/H7 E. coli and 1 – p, or q, the number of incorrect detections.  
p1 = the proportion of correct selections for Card Reader 1 and p2 = the proportion of 
correct selections for Card Reader 2. If p1 cannot be significantly less than p2, then 
the alternative test is p1 < p2. 

 H0: p1 ≥ p2 
 HA: p1 < p2  (the proportion of correct reads from Card Reader 1 is less 

than that from Card Reader 2) 
 Step 2. Set n1 and n2, as well as α. 
 Twenty (20) replicates will be used for both n1 and n2, and α = 0.05. 
 Step 3. Write out the test statistic to be used. 
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 Step 4. State the decision rule. 
  If zc < zt = –1.64,* reject H0. There is significance evidence to claim that 
Card Reader 1 has more detection error than Card Reader 2 at α = 0.05 (Fig. 6.3). 

Review 
*Where did the –1.64 come from? 

Using the normal distribution table (Table A.2), subtract α from 0.5. 
            0.5 – 0.05 = 0.450 
Next, from Table A.2, find the value 0.450, and find the left-most value of that 
row (1.6) and the upper-most value of that column (0.04). Combine them; 1.6 + 
0.04 = 1.64. Because this is a lower-tail test, the 1.64 is negative, so zt = –1.64. 
 

 

 
 Step 5. Perform experiment. The associated data (two dilution levels) are pre-
sented in Table 6.1.  

Table 6.1 Example 6.4 data 

 Population 103 Population 102 
n Card Reader 1 Card Reader 2 Card Reader 1 Card Reader 2 
1 + + 0 0 
2 + + 0 + 
3 + + + 0 
4 + + + + 
5 0 + + 0 
6 + + + + 
7 + + 0 lost 
8 + + + + 
9 + + 0 + 
10 + + 0 + 
11 + + + 0 
12 + + + 0 
13 + + 0 + 
14 + + 0 + 
15 + + 0 + 
16 + + + 0 
17 + + + + 
18 + + 0 + 
19 + + + + 
20 + + + + 

 95.0
20
19

1 ==p  00.1
20
20

2 ==p  55.0
20
11

1 ==p  684.0
19
13

2 ==p  

6. Qualitative Data Analysis 

Fig. 6.3 Decision rule, Example 6.4, Step 4 
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 Results from the 103 dilution were not used for the analysis because p1 and p2 
were close to 1; the 102 data were used. For Card Reader 2, one sample was lost. 
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 Step 6. Make the decision. 
 Because zc = –0.8596 </  zt = –1.64, one cannot reject H0 at α = 0.05. Card Reader 
1 does not provide significantly less accurate data. However, using one’s microbio-

Key Point 

Guide for Two-Sample Proportion Test Using the Six-Step Procedure 

Step 1. State the hypothesis. 
Lower-Tail Upper-Tail Two-Tail 
H0: p1 ≥ p2 H0: p1 ≤ p2 H0: p1 = p2 
HA: p1 < p2 HA: p1 > p2 HA: p1 ≠ p2 

Step 2. Set n and α. 
     The sample sizes must satisfy np > 5 for both group 1 and group 2 and, if possible,  
n1 = n2. If np >/  5, use the Poisson zc formula. 

Step 3. Write out the test statistic to use. 
If np > 5 for both groups, use 
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If np >/  5 for at least one group, use 

             

⎟
⎠
⎞

⎜
⎝
⎛ +

−=

21

21

11
nn

p

ppz
p

c  

Step 4. Make the decision rule. 

   
Reject H0 if zc < 
zt at α. 
zt = 0.5 – α. Then 
find zt in Table A.2, 
which will be a 
negative value. 

Reject H0, if zc > zt at α. 
zt

 
= 0.5 – α. Then find zt in 

Table A.2, which will be a 
positive value. 

Reject H0 if –zc < –zt or zc > zt at α/2. 
zt = 0.5 – α/2. Then find zt, which 
will take both negative and positive 
values. 

Step 5. Perform the experiment. 
Step 6. Make the decision. 

102 and 103 levels. This would tip the microbiologist to look into the situation in 
greater depth. Just because a statistic cannot demonstrate a difference does not mean 
a difference worth detecting is not present. 

6.4. Comparing Two Sample Proportions

logical knowledge, one sees that Card Reader 2 was the better detector at both the  

+ = correct selection by Card Reader (confirmed positive); 0 = incorrect negative 
reading by Card Reader (confirmed positive) 
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Recall from previous chapters that, in equivalence testing, the test hypothesis is 
equivalence, not difference. When microbiologists use a conventional statistical 
hypothesis test, as we have been doing in this chapter up until now, and conclude 
that two samples are not significantly different at a specified α level, the H0 hypothe-
sis is not rejected, but this does not mean the samples are equivalent. One can only 
state a significant difference between the samples was not detected. The sample data 
could be very different, but the sample size may have been too small and/or the vari-
ability too great to detect a significant difference. This is not the case in equivalence 
testing. If the test is underpowered, the statistic reverts to stating there is not enough 
information to conclude equivalence. 
 

Key Point 
To conclude that two samples are not different using a standard test hypothesis is 
not the same as saying they are equivalent. To do that, one must use an equiva-
lence test. 
 

6.5.1 Equivalence Testing: One Proportion Sample Compared  
to a Standard 

Technically, a two-tail test is used for equivalence, and a single-tail test for either a 
nonsuperiority or a noninferiority test, depending upon the direction. Also, remember 
that, in standard statistical hypothesis testing, testing is for a difference. It is the 
alternative, or HA hypothesis that is the focus of the test, and the null hypothesis is 
the hypothesis of no difference. Conversely, in equivalence testing, it is the null, or 
H0 hypothesis that postulates a difference. If the test value is not large enough, the 
HA hypothesis of equivalence is rejected. What constitutes equivalence is a set or 
specified difference, ∆. Often, the ∆ level is set at 20% of the standard, as in bio-
equivalence studies for drug products. That is, if sample data are not more or less 
than 20% of the standard value (for the equivalence test), the sample is considered 
equivalent to the standard; the HA hypothesis of equivalence is accepted. If it is a 
directional test, and the sample is not less than 20% of a standard, it would be con-
sidered noninferior, and if not more than 20% of a standard, nonsuperior. 
 

Key Point 
 

 

 Step 1. State the hypothesis. 
 

H0: d ≤ ∆ (inferior) H0: d ≥ ∆ (superior) H0: –d ≤ –∆ and d ≥ ∆ 

HA: d > ∆ (noninferior) HA: d < ∆ (nonsuperior) A

6. Qualitative Data Analysis 

6.5 Equivalence Testing: Proportions 

(equivalence) 
H : –∆ < d < ∆ 

Fortunately, the six-step procedure can be used to evaluate for nonsuperiority, 
noninferiority, or equivalence. 

Noninferiority  Nonsuperiority  Equivalence 
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6.5. Equivalence Testing:  Proportions
 

d = p – π, where p = proportion of successes. 
 
 Step 2. Select the sample size, and state α. 
 Step 3. Write out the test statistic to use. 
 

Sample not inferior 
to standard value 

Sample not superior to 
standard value 

Samples equivalent to range 
values ∆L and ∆U 

( )
d

c s
dz ∆−−=  

d
c s

dz −∆=  ( )
d

c s
dz ∆−−= and 

d
c s

dz −∆=  

 For all conditions, ( )
n

sd
ππ −= 1 . 

 Step 4. Write out the acceptance/rejection criteria. 
 

Reject H0, that sample 
proportion is less than the 
standard, if zc > zt. 

Reject H0, that sample 
proportion is greater than 
the standard, if zc > zt 
 

Reject H0, if both zc 
calculations are greater 
than zt. This is a one-tail 
test performed two 
times. 

 Step 5. Perform the experiment. 
 Step 6. Make the decision. 
 
 Example 6.5. A microbiologist wants to claim that sutures E-407-1 are noninfe-
rior to (not worse than) standard sutures, 757-A1, in tensile strength. To meet the set 
strength of the standard, each test suture must remain unbroken after 45 kg of con-
tinuous weight for 24 h. The test sutures must have a success rate that is within 20% 
of the standard success rate, π, of 95%. 
 Step 1. State the hypothesis and set the ∆ level. 
  ∆ = 20%(π) 

  H0: d ≤ ∆. The test sutures are worse than the standard. 
  HA: d > ∆. The test sutures are not worse than (inferior to) the standard. 
 Step 2. Select the sample size, and set α. 
  n = 100, and α = 0.05, values set by the microbiologist 
 Step 3. Write out the test statistic. 

  ( )
d

c s
dz ∆−−= , where d = p – π, ∆ = (20%)(π), and ( )

n
sd

ππ −= 1  

 Step 4. State the decision rule. 
  If zc > zt, reject H0; the new sutures are not inferior to the standard at α. 
Using Table A.2, z0.05 = 0.5 – 0.05 = 0.450, which corresponds to 1.645. If zc > 
1.645, reject H0. 
 Step 5. Perform the experiment. 
  Of the 100 sutures tested, p = 97 successes. 
   p = 97/100 = 0.97, so d = 0.97 – 0.95 = 0.02 

NOTE: π is a theoretical or established proportion, ∆ is the set limit value, and  

 Noninferior Test 

113



   ( ) 0218.0
100

95.0195.0 =−=ds , and ∆ = (0.2)(0.95) = 0.19 

   ( ) 633.9
0218.0

19.002.0 =−−=cz  

 Step 6. Make the decision. 
 Because zc = 9.633 > zt = 1.645, there is strong evidence to claim noninferiority 
of the sample sutures to the standard at α = 0.05. The test sutures are not worse than 
the standard ones at α = 0.05. 

The same six-step procedure can be done with the confidence interval. However, 
Steps 3–6 differ. 
 Step 3. The test statistic is: 
  ∆ ≥ d + ztsd 
 Step 4. State the decision rule. 
  If ∆ ≥ d + ztsd, the test sutures are not inferior to the standard. 
 Step 5. Perform the experiment. 
  0.19 ≥ 0.02 + 1.645 (0.0218) 
  0.19 ≥ 0.056 
 So, H0 is rejected at α; there is significant evidence to conclude noninferiority. 

Example 6.6. Suppose a microbiologist wants to assure that a substitute topical  
antimicrobial used to treat peripherally-inserted central catheters is not less effective 
than a standard and does not result in increased infection rates. This can be viewed as 
a nonsuperiority test in that superiority, here, means increased infection rates. If the 
H0 hypothesis is not rejected, it means that the infection rate is greater than with the 
standard. The standard is associated with an infection rate of π = 0.23. 
 Step 1. State the hypothesis and set the ∆ level. 

0
is the standard. 

A
does the standard preparation. 

 Step 2. Select the sample size, and set α. 
  n = 32, and α = 0.10 
 Step 3. Write out the test statistic. 

  
d

c s
dz −∆= , where ∆ = 20% of π, d = p – π 

  d = 0.156 – 0.230 = –0.074 

  ( )
n

sd
ππ −= 1  

  ∆ = 0.2(0.23) = 0.046, and sd = 0.0744 

  ( ) 63.1
0744.0

074.0046.0 =−−=−∆=
d

c s
dz  

6. Qualitative Data Analysis 

6.5.2 Confidence Interval Approach 

6.5.3 Nonsuperiority 

 H : d ≥ ∆. The test product is associated with higher rates of infection than 

 H : d < ∆. The test product provides no worse infection prevention than 
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6.5. Equivalence Testing:  Proportions
 

  Reject H0 if zc > zt. zt = z0.10 = 0.5 – 0.10 = 0.40 = 1.285 (Table A.2). 
 Step 5. Perform the experiment. 
  Out of 32 test cases, five were positive, so p = 5/32 = 0.156. 
 Step 6. Make the decision. 
 Because zc = 1.63 > zt = 1.285, there is significant evidence to reject H0. The 
substitute antimicrobial is no worse in infection prevention than is the standard at  
α = 0.10. The confidence interval approach is: 
  Reject H0 if ∆ ≥ d + ztsd. 
Where ∆ = 0.046 ≥ −0.074 + 1.285 (0.0744), 0.046 > 0.022. 
 So, one can reject H0; the test product produces infection prevention not worse 
than that of the standard. 

This process will apply only if there is a standard range of ∆; that is, ±∆. For exam-
ple, the standard may be ±x% of a set value. Suppose the microbiologist in Example 
6.5 wants to demonstrate equivalence of the new suture to the standard suture in 
terms of tensile strength. Let us say that the success rate of the new sutures must be 
±20% of that of the standard success rate of 95%. Hence, ∆ = 0.2π = 0.2 (0.95) = 
0.19. 
 Step 1. State the hypotheses. 
  H0: –d ≤ –∆, and d ≥ ∆ 
  HA: –∆ < d < ∆ 
 Step 2. Select the sample size, and set α. 
  n = 100, and α = 0.05 
 Step 3. State the test formulas. There are two single-sided (one-tail) tests. 

  For the lower-side, 
( )

( )
Lower Lc c

d

d
z z

s
− −∆

= =  

  For the upper-side, 
( )Upper Uc c

d

dz z
s

∆ −
= =  

 Step 4. State the decision rule. 
  If tabledLcz z>  and tabledUcz z> , reject H0; the substitute and the standard 
are equivalent at α = 0.10. 
  zt = 1.645 for α = 0.05 (Table A.2) 
 Step 5. Perform the experiment. 

   97.0
100
97 ==p , d = 0.97 – 0.95 = 0.02, ∆ = 0.19, and sd = 0.0218 

   ( ) 633.9
0218.0

02.019.0 =+=−−∆=
d

Lc s
dz  

   798.7
0218.0

02.019.0 =−=−∆=
d

Uc s
dz  

 
 

 Step 4. State the decision rule. 

6.5.4 Two-Tail Test: Equivalence 
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 Step 6. Make the decision. 
 Both the upper and lower values of zc must be greater than zt = 1.645 in order to 
reject H0. In this example, they are. Hence, the tensile strength of the new sutures is 
equivalent to that of the standard sutures. 
 

If ±∆ falls outside the confidence interval, d – ztsd < ∆ < d + ztsd, the H0 hypothesis is 
rejected. 
  α = 0.05, and ∆ = 0.19. 
  d ± ztsd = 0.02 ± 0.036, and –0.016 < 0.19 </  0.056. 
 Hence, H0 is again rejected. 

6.6 Two-Sample Equivalence: Proportions 

Equivalence, nonsuperiority, and noninferiority tests can be applied to comparing 
two sample sets to each other. Many times, the two samples compared will be a test 
and a reference or control group, although this certainly does not have to be the case. 
 As noted earlier, equivalence is accepted, in many cases, if the test group does 
not differ from the control group by more than 20% (i.e., ±20%), in terms of average 
values. For example, if a reference product fill is between 100 mL and 120 mL, and 
if the test product average is within that range, equivalence in fill-volume is con-
cluded between the test and control products. 
 Usually, a more formal statistical procedure is applied. In this case, the difference 
between the test and the control, say p1 and p2, respectively, is compared to the speci-
fied tolerance limits. The basic formula is d = p1 – p2, and the test statistics are de-
pendent on equivalence, nonsuperiority, and noninferiority. 

  
d

c s
dz −∆=  or ( )

ds
d ∆−−  

where ∆ is the specified difference allowable (±20%, in this case) between p1 and p2 

   
1

1
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All three tests – equivalence, noninferiority, and nonsuperiority – can be performed. 
 Let us write out the form of the statistics using the six-step procedure. 
 Step 1. State the specified allowable difference, ∆, that the test (p1) can be from 
the reference (p2) and still be equivalent. The test hypotheses are: 
 

Noninferior Nonsuperior Equivalent 
H0: d ≤ ∆ H0: d ≥ ∆ H0: –d ≤ –∆, and d ≥ ∆ 
HA: d > ∆ HA: d < ∆ HA: –∆ < d < ∆ 

6. Qualitative Data Analysis 

6.5.5 Confidence Interval
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 Step 3. Write out the test statistic. 
Noninferior Nonsuperior Equivalent 
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d
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dz ∆−−=  
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 Step 4. Write out the acceptance/rejection criteria. 
 

Reject H0 if 
( )221; −+> nntc zz α  

Reject H0 if 
( )221; −+> nntc zz α  

Reject H0 if Lcz t

Ucz  > zt 
 
 Step 5. Conduct the experiment. 
 Step 6. Make the decision. 
 
 Example 6.7. A microbiologist uses Clostridium difficile spores from an outside 
laboratory source to evaluate the effectiveness of hospital room disinfectants. Lately, 
the standard spores have been harder to purchase from the source. Because the hospi-
tal quality control historically has been based on the resistance of the standard 
spores, before switching to a new laboratory source, the microbiologist wants to 
assure equivalence in spore resistance to a 0.05% peracetic acid solution. This will 
be measured in terms of D-values, or the time that 0.05% peracetic acid reduces the 
initial spore load by 1.0 log10. Each initial spore population level must be at least 5.0 
log10. 
    Step 1. State the hypotheses. This is clearly a bioequivalence study, a two-tail test. 

  H0: –d ≤ –∆ and d ≥ ∆ 
  HA: –∆ < d < ∆ 
∆ is ±0.50 log10. The unknown population difference is estimated by d. There can be 
no more difference between p1 and p2 than ±0.50 log10. 
 Step 2. State n1, n2, and α. 
  n1 = n2 = 15, and α = 0.05 
 Step 3. Write out the test statistic (there are two one-sided tests). 

  ( )
d

c s
dz ∆−−=  and 

d
c s
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 Step 4. State the decision rule. 
  If Lcz  and Ucz  are larger than zt, reject H0 at α. 
  zα = z0.05 = 1.645 (Table A.2) 
 Step 5. Perform the experiment. Fifteen sub-samples of each Clostridium difficile 
spore sample were tested. All samples were greater than 1 × 105 spores per mL, 
based on dilution of a stock spore suspension (1 × 109 spores per mL) and verified by 

 > z  and

1 2Step 2. Select sample sizes for both n  and n , which ideally will be the same. Set α. 
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baseline colony counts. A “+” indicates that a value was within 0.50 log10 (±0.25) of 
the D-value of a 1.0 log10 reduction. A “–” designates that it was not (Table 6.2). 

Table 6.2 Example 6.7 data 

n Group 1 Group 2 (standard) 
1 + – 
2 + + 
3 – + 
4 + – 
5 + – 
6 + + 
7 – + 
8 – + 
9 + + 
10 + – 
11 + – 
12 – + 
13 + – 
14 – – 
15 – – 

   60.0
15
9

1 ==p , and 4667.0
15
7

2 ==p  
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⎟
⎠
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ds  

   1822.0=ds  
   1333.04667.060.021 =−=−= ppd  

   ( ) 4759.3
1822.0

5.01333.0 =+=∆−−=
d

Lc s
dz  

   0126.2
1822.0

1333.05.0 =−=−∆=
d

Uc s
dz  

 Step 6. Make the decision. 
 Because 645.14759.3 =>= tLc zz  and 645.10126.2 =>= tUc zz , one rejects H0 at 
α = 0.05. There is significant evidence that the two groups are equivalent. 
 The confidence interval approach is as follows: 

  ( )
2997.01333.0

1822.0645.11333.0
±=
±=± dszd α  

  5.04330.01664.05.0 <<<−<− d  
 Because both the lower and upper values of the (1 – 2α) = 1 – 2(0.05) = 90% of 
the confidence intervals are contained within the upper and lower bounds of ∆, 
Group 1 and Group 2 are equivalent at 2α = 0.10. 
 Suppose the microbiologist wanted to ensure that Group 1 was not inferior to 
Group 2, the standard. This means the unknown population proportion for the test 
group (Group 1), in effect, is larger than the unknown population proportion for the 
test group standard (Group 2) by more than the lower set limit, –∆. If this is so, then 
the alternative hypothesis, HA, of noninferiority is concluded. 
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 Step 1. State the hypotheses. 
  H0: d ≤ ∆ 
  HA: d > ∆ 
  where ∆ = 0.05, and d = p1 – p2 
 Step 2. State n1, n2, and α. 
  n1 = n2 = 15, and α = 0.05. 
 Step 3. Write out the test statistic. 

  ( )
d

c s
dz ∆−−=  

 Step 4. State the decision rule. 
  645.105.0 == zzt  (Table A.2) 
  If 645.1=> tc zz , reject H0 at α = 0.05. 
 Step 5. Perform the experiment.  

   ( )
d

c s
dz ∆−−=  

   1333.04667.060.021 =−=−= ppd  

   ( ) ( ) 4759.3
1822.0

5.01333.0
1822.0

5.01333.0 =+=−−=∆−−=
d

c s
dz  

 Step 6. Make the decision. 
 Because zc = 3.4759 > zt = 1.645, one must reject H0 at α = 0.05. The new group 
(Group 1) is not inferior to Group 2 at α = 0.05.  
 The confidence interval approach is as follows: 

   
( )

1664.0
2997.01333.0

1822.0645.11333.0

−=
−=
−=− dszd α

 

 If –∆ < d – zt(sd), reject H0 at α. Because –0.5 < –0.1644, the H0 hypothesis is  
rejected at α = 0.05. 
 Suppose the microbiologist wants to assure that Group 1 (p1) is not superior to 
Group 2 (p2) by ∆. 
 Step 1. State the hypotheses. 
  H0: d ≥ ∆ 
  HA: d < ∆ 
 Step 2. State n1, n2, and α. 
  n1 = n2 = 15, and α = 0.05. 
 Step 3. Write out the test statistic. 

  
d

c s
dz −∆=  

 Step 4. State the decision rule. 
  zt = zα = 1.645 (Table A.2) 
  If zc > zt = 1.645, reject H0 at α = 0.05. 
 Step 5. Perform the experiment.  
  1333.04333.060.021 =−=−= ppd  

  0126.2
1822.0

1333.05.0 =−=−∆=
d

c s
dz  
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 Step 6. Make the decision. 
 Because zc = 2.0126 > zt = 1.645, one must reject H0 at α = 0.05. p1 is nonsuperior 
to p2. 
 The confidence interval approach is as follows: 
  If ∆ > d + zαsd, reject H0 
  0.1333 + 1.645 (0.1822) = 0.4330 
  ∆ = 0.5 > 0.4330, so p1 is not superior to p2. 
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Chapter 7 
Nonparametric Statistical Methods 

We have discussed many statistical test methods to this point. Much of our attention 
has been focused on tests for analyzing interval-ratio data, which are quantitative in 
nature. These include t-tests, Analysis of Variance (ANOVA), and regression 
analysis. We have also discussed statistical methods using nominal data, sometimes 
called binary data, because they can have only two outcomes: success/failure, 
positive/negative, or growth/no growth. In this last chapter, we will again deal with 
interval-ratio data and nominal data and will also deal with data that fall between 
these two extremes of the spectrum – data that can ranked. These data are termed 
ordinal data and, like nominal data, are qualitative in nature. Table 7.1 summarizes 
these distinctions. 

Table 7.1 Three data scale types 

Nominal data Ordinal data Continuous data 
Binary values (1,0) 
representing growth/no 
growth, success/failure, 
positive/negative; these 
can be distinguished, but 
not ranked 

Distinguished by 
multiple attributes and 
can be ranked in order 
(viz., better or worse) 

Interval-ratio data; these 
data represent the highest 
level of differentiation of 
data and are continuous 
quantitative 
measurements, without 
gaps. 

 

statistical methods. Nonparametric statistical methods are favored by many in 
research, for they do not require the often rigorous assumptions that parametric 
methods require. Parametric statistics are designed to estimate parameters such as the 
population mean and variance. In order to be useful measurements, both the mean 
and variance must be from data that are normally distributed. That is, the data are 

 

Data in all three of these scales of measurement can be analyzed using nonparametric 

© Springer Science + Business Media, LLC 2008 
D.S. Paulson, Biostatistics and Microbiology, doi: 10.1007/978-0-387-77282-0_7, 121



symmetrical around the mean (Fig. 7.1a). This symmetry gives the data the bell-
shaped curve illustrated throughout this book. Parametric statistics also require that 
the data be unimodal, or have only one peak, instead of two or more (Fig. 7.1b). 
Parametric statistical methods are prone to bias when the data are not symmetrical 
about the mean (Fig. 7.1c, d), as well as when extreme values are present in the data 
set (Fig. 7.1e). These problems are especially prevalent in studies having relatively 
small sample sizes usually necessary in real-world practice, instead of the larger ones 
used in statistical theory. 
 

 
Fig. 7.1a–e Data distribution curves 

 Many times, a microbiologist must be satisfied with a sample size of 10 or even 
fewer. When the data distribution requirements just discussed cannot be assured, 
nonparametric statistical methods are useful. However, not just anything goes – all 
nonparametric methods, like the parametric ones, require that the data have been 
collected at random. 
 By convention, two types of statistical methods are included under the heading of 
nonparametric: 1) truly nonparametric procedures and 2) distribution-free statistical 
methods. As previously stated, nonparametric statistics, strictly speaking, are not 
concerned with estimating population parameters, µ and σ. These include χ2 
goodness-of-fit tests and tests for randomness of a data set. Distribution-free tests do 
not depend on the underlying data distribution – normal, skewed, uniform, or 
bimodal. 
 Yet, there is a price – sometimes heavy – to pay. Nonparametric statistical 
methods generally lack the power of parametric statistics, so they require greater true 
differences to exist between tested groups in order to detect a significant difference 
than do their counterpart parametric statistics. That is, they err on the Type II side, 
concluding no significant difference exists when one really does. This is a problem 
when performing small studies to ascertain proof of concept or to find a product 
group that may show promise but needs further development. One solution is to set 
the alpha error level higher; i.e., instead of using α = 0.05, use α = 0.10 or 0.15. 
 We will discuss each nonparametric test method, first using the nominal data 
scale; next, ordinal data will be covered, and then interval data. 
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7.1. Comparing Two Independent Samples: Nominal Scale Data
 
7.1 Comparing Two Independent Samples: Nominal Scale Data 

7.1.1 Comparing Two Independent Samples: 2 × 2 Chi Square Test 

For comparing two independent samples, a 2 × 2 Chi Square (χ2) contingency table is 
very commonly applied. One could also use a two-sample proportion t-test, covered 
in Chapter 6, given there are enough collected data points; n > 30. For work with the 
2 × 2 contingency table, we do not convert count data to proportion data. Basically, 
the 2 × 2 design uses two treatment conditions performed on two sample groups* 
(Table 7.2).  

Table 7.2 2×2 Contingency table 

 Treatment condition 
  A B  

1 a  a + bSample group 2 c  c + d 
  a + c b + d N 

 
 The statistical assumptions of this test are easy to make. The selection of test units 
assigned to Groups A and B must be random, and each treatment group independent 
in relation to the other. We will use the six-step procedure in the following example. 
 Step 1. Formulate the test hypotheses. Three test conditions can be evaluated. 
 

Lower-Tail Test Upper-Tail Test Two-Tail Test 
H0: A ≥ B H0: A ≤ B H0: A = B 
HA: A < B HA: A > B HA: A ≠ B 

 
 Step 2. Select the sample sizes and α level. 
 Step 3. Write out the test statistic. Both the lower-tail and upper-tail tests use the 
normal distribution approximation: 

  ( )
( )( )( )( )dbcadcba

bcadNzc
++++

−=
2

 (z Distribution [Table A.2]). 

 The two-tail test uses the χ2 (Chi Square) distribution: 

   ( )
( )( )( )( )dbcadcba

bcadN
c ++++

−=
2

2χ  (Chi Square [Table A.5]). 

   ( )
2

1,
2

αχχ =t  with 1 degree of freedom. 
 Step 4. State the decision rule. 

                                                           
 
 
* The treatment condition is usually A = growth, B = no growth, or A = +, B = –, etc. 

b
d
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 Lower-Tail Test Upper-Tail Test Two-Tail Test 
Reject H0 if ( )αtc zz −<  Reject H0 if ( )αtc zz >  Reject H0 if ( )

2
1,

2
αχχ tc >  

(Table A.5) 
 Step 5. Perform experiment. 
 Step 6. Make decision. 
 
7.1.1.1 Two-Tail Test 

Example 7.1. A microbiologist wants to know if bacteriological media from two 
different geographic locations that use their local waters to mix ingredients will 
provide different growth data. A number of sample runs are performed over the 
course of 3 months, collecting the number of positive and negative growth outcomes 
for the same microorganism, Clostridium difficile. 
 Step 1. State the hypothesis. 
 To determine if the media differ on the basis of geographical locations, the 
microbiologist will use a two-tail test: A = geographical region A; B = geographical 
region B. 
  H0: A = B 
  HA: A ≠ B 
 Step 2. Set the sample sizes, n, and the α level. 
 The microbiologist would like to set the sample sizes from both labs the same, 
but must rely on data provided by each laboratory manager. However, α will be set at 
0.10. 
 Step 3. Write out the test statistic. 
 This is a χ2 (Chi Square) test for difference (two-tail). 

  ( )
( )( )( )( )dbcadcba

bcadN
c ++++

−=
2

2χ  

 Step 4. State decision rule. 
 If 22

tc χχ > 0

different at α = 0.10. 
  ( ) 706.22

1,10.0
2 == χχt  (From Table A.5) 

 If 706.22 >cχ , reject H0. 
 Step 5. Perform the experiment (Table 7.3). 

Table 7.3 2×2 Contingency table 

Location A  Location B 
Sample n Failures  Sample n Failures 

1 20 2  1 17 3 
2 30 1  2 31 7 
3 41 3  3 25 1 
4 17 5  4 45 1 
5 32 2  5 27 6 
 140 13   145 18 

, reject H . The growth results from the two labs are significantly  
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  Format   Data Set 

 + –    + –  
Location A a b a+b Location A 127 13 140 
Location B c d c+d 

 
Location B 127 18 145 

 N   254 31 285 
 + = success; – = failure 

  ( )
( )( )( )( )

( ) ( )[ ] 719.0
31254145140
1271318127285 22

2 =
⋅⋅⋅
⋅−⋅=

++++
−=

dbcadcba
bcadN

cχ  

 Step 6. Make decision. 
 Because 706.2719.0 22 =>/= tc χχ , one cannot reject H0 at α = 0.10. There is no 
detectable difference in the growth data from the two different locations when α = 
0.10. 
 
7.1.1.2 Lower-Tail Test 

Suppose the number of negatives at Location A was 13, and at Location B, it was 51. 
 

Location A Location B 
n = 140 n = 145 

Negatives = 13 Negatives = 51 
 
 Step 1. Determine the hypotheses. 
  H0: A ≥ B 

 HA: A < B (Fewer negatives at Location A than at Location B; the key is 
what is expected as “fewer” must go in A of the contingency table.) 

 Step 2. Set the alpha level; α = 0.10. 
 Step 3. Write out the test statistic. 

  ( )
( )( )( )( )dbcadcba

bcadNzc
++++

−=
2

 

 Step 4. Write out the acceptance rule. 
  If zc < zt, reject H0 at α. 
  0.5 – 0.10 = 0.40 ≈ –1.282 = –zt (Table A.2). 
 Remember that, because this is a lower-tail test, z is negative. If zc < –1.282, 
reject H0 at α = 0.10. 
 Step 5. Perform the experiment (Table 7.4). 

Table 7.4 2×2 Contingency table 

 Location   
 A B  

Failures (–) 13 (a) 51 (b) 64 (a+b) 
Successes (+) 127 (c) 94 (d) 221 (c+d) 

 140 (a+c) 145 (a+b) 285 N 

a+c b+d 
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 ( )
( )( )( )( )

( ) ( )[ ] 236.5
14514022164

1275194132852

−=
⋅⋅⋅
⋅−⋅=

++++
−=

dbcadcba
bcadNtc  

 Step 6. Make the decision. 
 Because tc = –5.236 < –1.282, reject H0 at α = 0.10. There is strong evidence that 
media Location A has significantly fewer failures than does Location B. 
 
7.1.1.3 Upper-Tail Test 

Suppose the microbiologist wants to evaluate media successes instead of failures. 
  HA: A > B will be the alternate hypothesis. 
 Step 1. State the hypotheses. 
  H0: A ≤ B 
  HA: A > B (Location A media has more successes than does that of Location B.) 
 Step 2. Let α = 0.10. 
 Step 3. Write out the test statistic. 

  ( )
( )( )( )( )dbcadcba

bcadNtc ++++
−=

2

 

 Step 4. State the decision rule. 
  If tc > tt = 1.282 (Table A.2), reject H0 at α = 0.10. 
 Step 5. Perform the experiment. 
 

Key Point 
 

For the positives, ad – bc > 0, for an upper-tail test to occur, 
this requires a to be the successes. 

 
    

 Location   
 A B  

Successes 127 (a) 94 (b) 221 (a+b) 
Failures 13 (c) 51 (d) 64 (c+d) 

 140 (a+c) 145 (b+d) 285 (N) 

  ( ) ( ) 236.5
14514064221

139451127285 =
×××

×−×=ct  

 Step 6. Make the decision. 
  Because tc = 5.236 > 1.282, reject H0 at α = 0.10. 

7.1.2 Comparing Two Related Samples: Nominal Scale Data 

Paired samples or observations are samples that are blocked according to similarities. 
This strategy, when applied correctly, makes the statistic more powerful. In a 
specific example, say for the rate of lung cancer among smokers and nonsmokers in 
a very specific population, 45- to 60-year-old African males living in Louisiana, the 
pairing would be the specific population, age group, and race. Each smoker would be 
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paired with a like nonsmoker, and lung cancer rates would be compared over time. 
Table 7.5 shows the schema. The trick is that each group (smokers/nonsmokers) is 
paired. 

Table 7.5 Paired data 

  Smokers  
  Cancer No Cancer  

Cancer a b a+b Nonsmokers No Cancer c d c+d 

where 
  a = Pairs of smokers and nonsmokers with cancer* 
  b = Pairs of nonsmokers with cancer and smokers without cancer 
  c = Pairs of nonsmokers without cancer and smokers with cancer 
  d = Pairs of smokers and nonsmokers without cancer 
 
 Suppose ten pairs of subjects are used, smokers and nonsmokers, and followed over 
time – that is, a follow-up, or prospective study. Additionally, a retrospective study 
could be conducted (though weaker) by pairing after the fact smokers and nonsmokers 
who have similarities that constitute the pairing rationale, and who have or have not 
developed cancer. The key to this design is in the “pairing” strategy. Let + represent 
subjects with cancer, and – represent those with no cancer (Table 7.6). 

Table 7.6 Smoker/nonsmoker pairing schema 

Pair Smoker Nonsmoker 
1 + + 
2 + + 
3 + – 
4 + – 
5 – + 
6 – + 
7 – + 
8 – – 
9 – – 
10 – – 

 

 A paired design also is applicable when comparing status of a variable over time, 
such as before treatment vs. after treatment. Here, each person is his/her own control – 
that is, each subject is paired with him/herself. For example, in a skin irritation 

then evaluated again (Fig. 7.2). 

                                                           
 
 
* Each pair is one sample. 

  a+c b+d N  

evaluation, subjects enter the study with irritated or nonirritated hands, are treated, and 
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Fig. 7.2 Time sequence schema 

 The paired design is: 
  Posttreatment 
  Irritated Nonirritated 

Irritated a b Pretreatment 

 
 The paired 2 × 2 contingency table test to use is McNemar’s Statistic, which is 
simply cbcbzc +−= , and easily can be completed using the six-step procedure. 
The analysis is performed only as a two-tail test to detect a difference. 
 
 Example 7.2. Suppose a microbiologist was assigned to evaluate the nosocomial 
incidence of Staphylococcus aureus colonization in the nasal cavities of patients 
staying at least 48 h in a large teaching hospital. PA = patients entering the hospital; 
PB = the same patients leaving after 48 h. Each patient is evaluated only against 
him/herself, so this is a pre-post design, wherein each person is his or her own 
control. 
 Step 1. State the hypotheses. 
  H0: PA = PB; colonization of nasal cavities by Staphylococcus aureus is the 
same for patients entering and leaving the hospital. In other words, they do not 
acquire the staph colonization in the hospital. 
  HA: PA ≠ PB; above statement is not true. Patients entering and leaving the 
hospital have different S. aureus colonization rates. 
 Step 2. Set sample size, n, at 100, and α = 0.05. 
 Step 3. Write out test statistic. 

  
cb

cbzc
+
−=  

 Step 4. State decision rule. 
  If tc zz > , reject H0 at α = 0.05. 
  tz  is from Table A.2 (z Distribution table) 
 To find zt, zt = 0.5 – (α/2) = 0.5 – (0.05/2) = 0.5 – 0.025 = 0.4750. The z values 
corresponding to 0.4750 = 1.96 or –1.96 and 1.96 for a two-tail test. So, if |zc| > 
|1.96|, reject H0 at α = 0.05. 
 Step 5. Perform the experiment. 
 N = 100 = total number of patients evaluated. 
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 a = 7 = the number of patients entering and leaving the hospital without S. aureus 
colonization. 
 b = 27 = the number of patients entering the hospital without S. aureus but 
leaving with S. aureus colonization. 
 c = 3 = the number of patients entering the hospital with S. aureus but leaving 
without S. aureus colonization. 
 d = 63 = the number of patients both entering and leaving the hospital with 
Staphylococcus aureus colonization. 

  Posthospitalization 
  Without S. aureus With S. aureus 

Without S. aureus 7 (a) 27 (b) Prehospitalization With S. aureus 3 (c) 63 (d) 

 38.4
327

327 =
+
−=

+
−=

cb
cbzc  

 
 Step 6. Make the decision. 
 Because zc = 4.38 > 1.96, reject H0 at α = 0.05. There is clearly a difference in 
Staphylococcus aureus colonization of the nasal cavities among those entering and 
leaving the hospital. Because this was a positive test (b > c), there is evidence that 
patients acquire Staphylococcus aureus colonization of their nares at a significant 
rate during their hospitalization. 

7.1.3 Comparing More than Two Independent Samples: Nominal  
Scale Data 

The Chi Square (χ2) test for association can be used for comparing more than two 
samples groups. It is done by comparing the “expected” and “observed” frequencies. 
The collected data are arranged in rows and columns in the form of an (r × c) 
contingency table (Table 7.7). 

Table 7.7 Row × column contingency table 

 Column (categories) Total 
 1 2 . . . c  
1 n11 n12 . . . n1c n1. 
2 n21 n22 . . . n2c n2. 
. 
. 
. 

. 

. 

. 

. 

. 

. 
. . . 

. 

. 

. 

. 

. 

. 

Row 

(levels) 

nr1 nr2 . . . nrc nr. 
  n.1 n.2 . . . n.c n.. = N 

 
 A contingency table is constructed from the observed data, and expected 
frequency data are also computed. The observed frequencies, “0ij,” are what actually 
occurred; the expected frequencies, “Eij,” are what is expected if the data are 
completely random events. 

r 
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 The 2χ  test statistic calculated is: 

  ( )
∑∑

−=
= =

r

i

c

j ij

ijij
c E

E
1 1

2
2 0χ , 

where ( ) .... nnnE jiij =  
 The tabled x2 value is 
  ( )( )[ ]( )

2
11;

2
−−= crt αχχ  

where r = number of rows, and c = number of columns. 
  If 22

tc χχ > , reject H0 at α = 0.05. 
 The entire process can be completed easily using the six-step procedure. Only a 
two-tail test can be determined. Let us work an example. 
 
 Example 7.3. A microbiologist wants to evaluate test kits made by four different 
manufacturers for reliability in detecting target organisms at three microbial 
inoculum levels, low, medium, and high. Low levels are defined as inoculum levels 
less than or equal to 1 × 104 colony-forming units (CFUs)/mL, medium levels are 
greater than 1 × 104, but less than or equal to 1 × 109, and high levels are greater than 
1 × 109 CFUs/mL. The observed reliability number is p/n, or the number of correct 
determinations over the total number of trials at that inoculum level. 
 Step 1. State the test hypotheses. 

0
inoculum levels. 
HA: At least one test kit differs from the others in reliability. 

 Step 2. Specify α and ni and nj. 
 Ten tests (nij = 10) will be completed using each of three inoculum levels. There 

α = 0.05. 
 Step 3. Write out the test statistic. 

 ( )
∑∑

−=
= =

r

i

c

j ij

ijij
c E

E
1 1

2
2 0χ  

where 

 
 trialsofnumber 

successes ofnumber 0 =ij  

 Step 4. Make the decision rule. 
 If 22

tc χχ > , reject H0 at α = 0.05. 
 ( )( )[ ]

2
11;05.0

2
−−= crt χχ . 

 There are four products, or four columns, and three levels, or three rows. So the 
(r – 1)(c – 1) degrees of freedom value is r – 1 = 3 – 1 = 2, c – 1 = 4 – 1 = 3, and 
(r − 1)(c – 1) = 2 × 3 = 6.  
  ( ) 592.122

6;05.0 =tχ  (Chi Square Table, Table A.5). 
  If 592.122 >cχ , reject H0 at α = 0.05. 
 Step 5. Perform the experiment. 

H : No difference exists between the test kits’ reliabilities in determining 
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are four test kit types to be evaluated, so the total sample size is 10 × 4 × 3 = 120. Let 

2
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7.1. Comparing Two Independent Samples: Nominal Scale Data
 
 A contingency table was constructed as Pi = successes ÷ total number of trials at 
that level. 

   Test Kit 
   1 2 3 4 

Low ( )410≤  2.0
10
2 =  4.0

10
4 =  3.0

10
3 =  5.0

10
5 =  

Medium ( )94  7.0
10
7 =  6.0

10
6 =  7.0

10
7 =  7.0

10
7 =  Inoculum 

Level 

High ( )910>  0.1
10
10 =  9.0

10
9 =  9.0

10
9 =  0.1

10
10 =  

 
 Sometimes, for computation purposes and avoiding too much “round-off ” error, 
it is good to use whole numbers. Hence, each value of Pi is multiplied by 10. 
 

  Test Kit Observed Values Row Totals 
  1 2 3 4 .in  

410≤  2 4 3 5 14 
94 10≤  7 6 7 7 27 Inoculum Level 

910>  10 9 9 10 38 

Column Totals jn.
 19 19 19 22 79 

 Next, the expected contingency table is made. ( ).. nnE ji
ij =  

 Test Kit Expected Values 
 1 2 3 4 

410≤  3.37* 3.37 3.37 3.90 
> 94 1010 ≤  6.49 6.49 6.49 7.52 

910>  9.14 9.14 9.14 10.58 

  E11* 37.3
79

1419 =⋅  

 Using the data from the tables of observed and expected values, 2
cχ  can be 

determined. 

  ( ) ( ) ( ) ( ) ( )
90.3
90.35

37.3
37.33

37.3
37.34

37.3
37.320 22222 −+−+−+−=−=∑∑

ij

ijij

E
E

 

 
   ( ) ( ) ( ) ( )

52.7
52.77

49.6
49.67

49.6
49.66

49.6
49.67 2222 −+−+−+−+

 

  
   ( ) ( ) ( ) ( ) 30.1

58.10
58.1010

14.9
14.99

14.9
14.99

14.9
14.910 2222

=−+−+−+−+  

  30.12 =cχ  
 Step 6. Make the decision. 
 Because 22 592.1230.1 tc χχ =>/= , one cannot reject H0 at α = 0.05. The manufac-
turers are not significantly different from one another. 

>10 ≤10

>10

n..
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7.1.4 Comparing More than Two Related Samples: Nominal Scale Data 

In situations in which sample groups are related – blocked design – the Cochran Test 
for related observations is very useful. For example, skin irritation studies, such as 
the repeat insult patch test (RIPT), use individual subjects each with multiple 
products applied. The blocked or related factor in this case is each subject. In another 
example, when bioreactors are used to grow bacteria in their natural biofilm state, the 
same reactor and microorganism are used, but with different attachment surfaces. If 
one compares several surfaces (more than two) for bacterial attachment equality, the 
Cochran Test will be appropriate. 
 The Cochran’s related sample test, also known as Cochran’s Q Test, requires that 
all c treatments are applied to each of the k blocks (e.g., all products are applied to 
each subject block). However, the samples are randomized within each block. This 
design is analogous to the randomized block ANOVA design in parametric statistics. 
The Cochran’s Q test statistic is 

  
( ) ( )

∑−

∑ −−−
=

=

=
r

i
i

c

j
j

rcN

Ncccc
Q

1

2

1

22 11
, 

which is a 2χ  test with c – 1 degrees of freedom, where c = number of treatments. 
 The data are arranged in a contingency table (Table 7.8). 

Table 7.8 Contingency table, Cochran’s Q Test 

  Treatment Row totals 
Block  1 2 3 . . . c  

1 n11 n12 n13 . . . n1c r1 
2 n21 n22 n23 . . . n2c  
3 n31 n32 n33 . . . n3c  
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
. . . 

. 

. 

. 

. 

. 

. 

 

nr1 nr2 nr3 . . . nrc rn 
Column 
totals  c1 c2 c3 . . . cc N 

 
 Example 7.4. A microbiologist wants to know if five different healthcare 
personnel handwash products differ in causation of skin irritation. Ten individuals 
have five Finn chambers applied to their backs, each containing an aliquot of a 
specific handwash product. Following 24-h exposures, the chambers are removed 
and the skin graded: 0 = no irritation, and 1 = irritation. The data analysis can be 
approached using the six-step procedure. 
 Step 1. State the hypotheses. 
  0
  HA: The above is not true. 
 Step 2. Set n and α. n = 10 for each block to receive all 5 treatments; α = 0.05. 
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r 

H : Each of the five products is equivalent in causation of skin irritation. 
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7.2. Ordinal Scale Data: Rankable
 

 Step 3. Write out the test statistic. 
( ) ( )

∑−

∑ −−−
=

=

=
r

i
i

c

j
j

rcN

Ncccc
Q

1

2

1

22 11
 

 Step 4. State the decision rule. ( ) ( ) 488.92
4;05.0

2
1;

2 === − χχχ α ct  (Table A.5). 
  If Q > 9.488, reject H0 at α = 0.05. 
 Step 5. Run the experiment. 

 Product/Treatment  
Block/Subject 1 2 3 4 5    

 1 1 1 1 0 1 4 
 2 1 0 0 1 0 2 
 3 0 0 1 0 0 1 
 4 0 0 0 0 0 0 
 5 0 1 1 1 1 4 
 6 0 1 0 1 1 3 
 7 0 1 1 1 1 4 
 8 0 1 1 1 1 4 
 9 1 0 1 1 1 4 
 10 0 1 0 1 1 3 

 

.ir  

Column totals 3 6 6 7 7 29   
      
    cj      

 
( ) ( )

∑−

∑ −−−
=

2

29

22 11

i

c

j

rcN

Ncccc
Q  = ( )( ) ( )

( ) ( )2222222222

222222

3444340124295
291577663155

+++++++++−
−−++++−  

 14.5=Q  
 
 Step 6. Make decision. 
 Because 488.914.5 >/=Q , one cannot reject H0 at α = 0.05. The products 
produce equivalent irritation. 

7.2 Ordinal Scale Data: Rankable 

7.2.1 Comparing Two Independent Sample Sets: Ordinal Data 

The Mann-Whitney U Test is a very useful nonparametric statistic analogous to the 
parametric two-sample independent t-test. Two sample groups are compared, Group 
A and Group B. In using the Mann-Whitney U Statistic, upper-, lower- and two-tail 
tests can be performed. The Mann-Whitney U test statistic is: 

  ( )
2

1
1

+∑=
=

AAn

i
ic

nnRM  

2 = satisfactory, and 3 = poor. 
To use ordinal statistical methods, the data must be rankable; for example, 1 = best, 
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where Mc = test statistic calculated, ∑
=

n

i
iR

1
 = the sum of the ranked numeric values for 

Group A (only Group A values are used, but values for both Group A and Group B 
are ranked), and nA = sample size of Group A. 
 The six-step procedure is as follows. 
 Step 1. State the hypotheses. 
 

Lower-Tail Test Upper-Tail Test Two-Tail Test 
H0: A ≥ B H0: A ≤ B H0: A = B 
HA: A < B HA: A > B HA: A ≠ B 

 
 Step 2. Specify α and n. The sample sizes for the two groups do not have to be 
the same. 
 Step 3. Write out the test statistic. 

  ( )∑ +−=
=

n

i

AA
ic

nnRM
1 2

1  

 Step 4. Present the decision rule. 
 

Lower-Tail Test Upper-Tail Test Two-Tail Test 
Reject H0 if Mc < Mt, 
where the tabled value of 
Mt (Table A.6), in this 
case, is Mα; ( )BA nntM ,;α  

Reject H0 if Mc > Mt, 
where the Mann-
Whitney tabled value 
is Mt(1 – α); nAnB –
 ( )BnAnM ,;α  
 

Reject H0 if Mc < Mt = M(α/2) 
or Mc > Mt = M(1 – α/2). 

( )BnAnM ,;2α  = lower tail, and 

( ) =− 21 αM ( )BnAnBA Mnn ,;2α−  = 
upper value 

 Step 5. Perform the experiment. 
 Step 6. Make the decision. 
 Let us use the six-step procedure to perform the example, Example 7.5, that 
follows. All three tests will be performed. 
 
 Step 1. Formulate the hypothesis. 
 

Lower tail Upper tail Two-tail 
H0: xA > xB H0: xA < xB H0: xA = xB 
HA: xA < xB HA: xA > xB HA: xA =/  xB 

 
 Step 2. Select α level and the sample size to be used. 
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7.2. Ordinal Scale Data: Rankable
 
 Step 3. Write out the test statistic. 

  
2

1) + n( n - R  = M AA
i

n

1=i
c ∑  

where R i

n

1=i
∑  = sum of the ranks of Sample Group A,  nA = sample size of Sample 

Group A, and Mc = test statistic calculated. 
 Step 4. Make the decision rule. 
 

Lower tail Upper tail Two-tail 
Reject H0 if Mc < M(α) 
where M = M )nB nA ;()( ,αα  

Reject H0 if Mc > M(1-α) 
where 

Mnn = M BA )n B n A ;()  (1 −− ,2αα

 

Reject H0, if Mc < M(α/2) 
or Mc > M(1-α/2) where 
M(α/2) is the tabled Mann 
Whitney value at 
M )n B ,n A /2;(α  and 

Mnn = M BA )n B n A ;()  (1 −− ,22 αα

 
Note: Table A.6 (Mann-Whitney Table) is used for all determinations of Mt. 
 Step 5. Compute statistic. 
 Step 6. Decision. 
 
 Example 7.5. Suppose a microbiologist wants to “compare” the nosocomial 
infection rates from hospitals in two separate geographic regions, A and B, based on 
data from five hospitals in each region. We will first calculate a two-tail test to 
determine if the rates differ. Following this, the upper- and lower-tail tests will be 
demonstrated. Table 7.9 presents the data received over a specified 1-month period, 
as to the average infection rate in the five hospitals in each region. 

Table 7.9 Data for Example 7.5 

Region A (nA) Region B (nB) 
11.3 12.5 
15.2 10.6 
19.0 10.3 
8.2 11.0 
6.8 17.0 
11.3 18.1 
16.0 13.6 
23.0 19.7 
19.1  
10.6  
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 First, it is a good idea to plot these data to make sure there are no trends – 
increases or decreases in infection rates over time, indicating a time element that 
must be considered. The time element might include variables of further interest, 
such as policy changes (e.g., disinfectant usages, etc.), a seasonal effect, an epidemic 
occurrence (such as the flu), or some other important influence. In this particular 
example, it is a preliminary analysis during an exploratory stage. 
 Step 1. Formulate the hypothesis. This is a two-tail test. 
  H0: xA = xB 
  HA: xA =/  xB 
where xA = average Region A nosocomial infection rate in five hospitals, and xB = 
average Region B nosocomial infection rate in five hospitals. 
 Step 2. Select α level. 
  α = 0.05, so α/2 = 0.025 
 Step 3. Write out the test statistic (tc). 

  
2

1) + n(n - R  = M AA
i

n

1=i
c ∑  

 Both Regions A and B will be ranked, but only Region A data is summed. In 
cases of ties, the sequential values equaling the number of ties will be summed and 
divided by the number of ties. For example, suppose values 7, 8, and 9 were all tied. 
The same value would be used in slots 7, 8, and 9, which is (7 + 8 + 9)/3 = 8. 
 Step 4. State the decision rule. Reject H0 if: 
  Mc < M(α/2) or Mc > M(1 – α/2) 
   where (nA = 10) and (nB = 8). 
  M )n ,n /2;( BAα = M(0.05/2, 10, 8) = 18 from Table A.6 (n1 = nA and n2 = nB). 
  M1 – α/2 = nAnB – M )n ,n /2;( BAα  = 10 ⋅ 8 – 18 = 62. 

c 0
 

 

Fig. 7.3 Example 7.5, Step 4 

 Step 5. Compute the test statistic, Mc. 
 First find R A

n

1=i
∑ , ranking both A and B (Table 7.10). 
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 So, if M  is less than 18 or greater than 62, we reject H  at α = 0.05 (Fig. 7.3). 



7.2. Ordinal Scale Data: Rankable
 

Table 7.10 Rank values of A and B from Table 7.8 

xA Values xA Ranking  xB Values xB Ranking  
6.8 1     
8.2 2     

   10.3 3  
10.6 4.5  10.6 4.5a→ (4+5)÷2=4.5 

   11.0 6  
11.3 7.5→ (7+8)÷2=7.5    
11.3 7.5     

   12.5 9  
   13.6 10  

15.2 11     
16.0 12     

   17.0 13  
   18.1 14  

19.0 15     
19.1 16     

   19.7 17  
23.0 18     

5.94
10

1
=∑

=i
AR      

a Because there are two values of 10.6, which compete for ranks 4 and 5, both 10.6 
values are given the mean value. 

 ( ) ( ) 5.39
2

110105.94
2

1
1

=+−=+−∑=
=

AAn

i
Ac

nnRM  

 Step 6. Because 39.5 is contained in the interval 18 to 62, one cannot reject H0 at 

 

 
Fig. 7.4 Example 7.5, Step 6 

 Let us now compute M1 – α and Mα to demonstrate both an upper- and a lower-tail 
test. Set α = 0.05. 
 
7.2.1.1 Upper-Tail Test 

 H0: xA < xB 
 HA: xA > xB 
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α = 0.05 (Fig. 7.4). 



 M1-α = nA nB - M )n n ;( BA,α  
  = (10 × 8) – 21 
  = 80 – 21 = 59 

c 0

 

 
7.2.1.2 Lower-Tail Test 

 H0: xA > xB 
 HA: xA < xB 
 Mα = M )n n ;( BA,α  = 21 

c 0

 

7.2.2 Comparing Two Related Sample Sets: Ordinal Data 

For two related data sets, the Sign Test statistic is appropriate and can be applied  
for lower-, upper-, and two-tail tests. The test compares two groups, A and B, 
arbitrarily labeled as “+” and “–,” on the basis of the sign of the “better” group in 
relation to the binomial table (Table A.7, Binomial Probability Distribution). 
“Better” may be less irritating, faster reaction, more potential, etc. One can use the 
same schema focusing on the worse of the two, also. In skin irritation studies, for 
example, two products are compared, A and B. Let A = + and B = –; each subject 
receives both treatments and are visually evaluated in terms of redness (Table 7.11). 
The treatment that produces the most skin redness is selected, an example of the 
worst-case situation being the one of interest. 

Fig. 7.5 Diagram of upper-tail test 
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 So, if M  > 59, reject H  at α = 0.05 (Fig. 7.5). 

 So, if M  < 21, reject H  at α = 0.05 (Fig. 7.6). 

Fig. 7.6 Diagram of lower-tail test 



7.2. Ordinal Scale Data: Rankable
 

Table 7.11 Treatment evaluation results 

 Treatment  

Subject A (+) B (–) Sign of greatest 
irritation group 

1 Red Slightly Red + 
2 Not Red Slightly Red – 
3 Red Slightly Red + 
4 Red Slightly Red + 
5 Red Slightly Red + 
6 Red Slightly Red + 
7 Not Red Red – 

 
 If the treatments are equivalent, the number of “+” equals the number of “–.” 
That is, p(+) = p(–), where p = proportion = 0.5. Using the six-step procedure to 
demonstrate, 
 Step 1. State the hypotheses. 
 

Lower-Tail Test Upper-Tail Test Two-Tail Test 
H0: p(+) ≥ p(–) H0: p(+) ≤ p(–) H0: p(+) = p(–) 
HA: p(+) < p(–) HA: p(+) > p(–) HA: p(+) ≠ p(–) 

 
 Again, we use p = 0.5 here because we are using the binomial table as an indicator 
of p(+) = p(–), or a completely randomized case where p(+) = p(–) = p(0.5). If the 
p = 0.5 tabled value is exceeded by the actual occurrence value of the + value, then 
the test is significant for an upper-, lower-, or two-tail test at α in that the probability 
is not p = 0.5. 
 
 Step 2. State α and n. 
 Step 3. Write out the test statistic, which in this case, is simply the use of the 
binomial table. 
 Lower-Tail Test Upper-Tail Test Two-Tail Test 

P[(Tc ≤ t|n, p)] P[(Tc ≥ n – t|n, p)] P[(Tc ≤ t|n, p)] or 
P[(Tc ≥ n – t|n, p)] 

 Step 4. Present the decision rule. 
 

Lower-Tail Test Upper-Tail Test Two-Tail Test 

Reject H0 if 
P[(Tc ≤ t|n, 0.5)] ≤ α 

Reject H0 if 
P[(Tc ≥ n – t|n, 0.5)] ≤ α 

Reject H0 if 
P[(Tc ≤ t|n, 0.5)] ≤ α/2 or 
P[(Tc ≥ n – t|n, 0.5)] ≤ α/2 

 
 Step 5. Perform the experiment. 
 Step 6. Make the decision. 
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 Example 7.6. A research and development microbiologist wants to determine if 
there is a difference between two test kits in the rapid detection of Streptococcus 
pneumoniae. Test Kit Card A will be designated “+,” and Test Kit Card B will be 
designated “–.” The quicker response of the two, in terms of minutes, will be termed 
the better response and, therefore, the sign representing that card will be used. 
However, only the “+” values will be enumerated for use in the analysis. 
 Step 1. Formulate the hypothesis. 
  H0: p(+) = p(–), or Test Kit Card A = Test Kit Card B 
  A
 Step 2. Select α and n. 
 We will use α = 0.10 and n = 20. 
 Step 3. Specify the test statistic. 
 Because this is a two-tail test, we use two cut-off levels of significance. 
  P[(Tc ≤ t|n, 0.5)] and P[(Tc ≥ n – t|n, 0.5)]. 
 Step 4. Make the decision rule. 
  If P[(Tc ≤ t|n, 0.5)] ≤ 0.10/2 = 0.05, or P[(Tc ≥ n – t|n, 0.5)] ≤ 0.10/2 = 0.05, 
reject H0 at α = 0.10. 
 Tc = the number of + values 
 Step 5. Perform the experiment. 
  The collected data are displayed in Table 7.12. 

Table 7.12 Data, Example 7.6 

n Card A(+) Card B(–) Faster 
1 3.7 3.8 + 
2 4.2 3.7 − 
3 5.1 2.7 – 
4 3.2 8.9 + 
5 5.6 4.3 – 
6 2.7 3.2 + 
7 6.9 2.7 – 
8 3.2 4.1 + 
9 2.1 5.8 + 

10 5.1 2.1 – 
11 2.7 5.1 + 
12 3.7 7.2 + 
13 5.4 3.7 – 
14 6.3 5.2 – 
15 6.1 6.9 + 
16 3.2 4.1 + 
17 5.1 5.1 Tie 
18 5.4 4.7 – 
19 8.1 6.8 – 
20 6.9 7.2 + 

   Tc = 10 
 

H : p(+) ≠ p(–) or Test Kit Card A ≠ Test Kit Card B 
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7.2. Ordinal Scale Data: Rankable
 
Total number of + values = 10. 
Because there is a tie, n is reduced by one to n = 19. 

Step 6. Make the decision. 
 

Key Point 
 
p = proportion of +/– values for equality, p = 0.5 
n = number of pairs evaluated 
Tc = number of + values 
t = tabled value for lower-tail test 
n – t = tabled value for upper-tail test 
 

 
 First, find the critical value in the binomial table (Table A.7) for p = 0.5 and n = 
19 that is closest to and less than α = 0.10/2 = 0.5. Note that the binomial table 
comprises discrete values of t (= r in the table), so the levels of α will not be exact, 
but rather, the nearest value less than the selected α. Hence, P[(Tc ≤ 5|19, 0.5)] ≤ 0.05 
becomes P[(Tc ≤ 5|19, 0.5)] ≤ 0.0222, and P[(Tc ≥ 19 – 5|19, 0.5)] = P[(Tc > 14|19, 
0.5)] ≤ 0.0222. 
 The H0 hypothesis is rejected for Tc ≤ 5 or Tc ≥ 14. Because Tc = 10, which is 
between 5 and 14, one cannot reject H0 at α = 0.10. 
 
7.2.2.1 Lower-Tail Test 

 To test the lower-tail: 
 Step 1. State the hypothesis. 
  H0: p(+) ≥ p(–) 
  HA: p(+) < p(–) 
 Step 2. Select α and n. 
  We will use α = 0.10 and n = 19, as before. 
 Step 3. State the test statistic. 
  P[(Tc > t|n, 0.5)]  
 Step 4. State the decision rule. 
  P[(Tc ≤ t|19, 0.5)] ≤ 0.10, or as tabled (Table A.7), 
  P[(Tc ≤ 7|19, 0.5)] ≤ 0.0961. If t ≤ 7, reject H0 at α = 0.10. 
 Step 5. Perform the experiment. 
  Tc = 10 
 Step 6. Make the decision. 
  Because Tc = 10, which is not less than or equal to 7, one cannot reject H0 at 
α = 0.0961. 
 
7.2.2.2 Upper-Tail Test 

 To test the upper-tail: 
 Step 1. State the hypothesis. 
  H0: p(+) ≤ p(–) 
  HA: p(+) > p(–) 
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 Step 2. Select α and n. 
  We will use α = 0.10 and n = 19. 
 Step 3. Write out the test statistic. 
  P[(Tc ≥ n – t|19, 0.5)] ≤ 0.10 
 Step 4. State the decision rule. 
  P[(Tc ≥ 19 – 7|19, 0.5)] ≤ 0.0961; if t ≥ 12, reject H0 at α = 0.10. 
 Step 5. Perform the experiment. 
  Tc = 10 
 Step 6. Make the decision. 
  Because Tc = 10 >/  12, one cannot reject H0 at α = 0.074. 

7.2.3 Comparing More than Two Independent Samples: Ordinal  
or Interval Data 

When more than two independent sample sets are compared, the Kruskal-Wallis 
statistic is perhaps the most widely applied. The Kruskal-Wallis Test is the 
nonparametric version of the one-factor Analysis of Variance. It is used for 
completely randomized designs that produce ordinal- or interval-level data, meaning 
that the test run order between sampled groups is completely random. For example, 
if there are to be four replicates of three different treatments, the fundamental design 
is presented in Table 7.13. 

Table 7.13 Treatment design, Kruskal-Wallis Test 

 1 2 3 
1 1 1 
2 2 2 
3 3 3 Replicates 

4 4 4 
 
 The 12 actual test runs (4 replicates, 3 treatments) are selected at random for 
evaluation. For example, the complete random sampling schema may be as shown in 
Table 7.14. 

Table 7.14 Sampling schema, Kruskal-Wallis Test 

 Treatment #1 
Run order 

Treatment #2 
Run order 

Treatment #3 
Run order 

1 2 1 3 1 6 
2 8 2 7 2 10 
3 12 3 1 3 4 Replicates 

4 5 4 9 4 11 
 
 Note that replicate 3, treatment 2 is run first (Run Order = 1), replicate 1, 
treatment 1 is run second, and replicate 3, treatment 1 is the final, or twelfth run. 
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7.2. Ordinal Scale Data: Rankable
 
 The Kruskal-Wallis test statistic is: 

 ( ) ( )13
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where 2
iR  = sum of ranks squared for the ith treatment, ni = number of treatment 

replicates, and N = total observations. 
 Ties can be a problem with the Kruskal-Wallis Test, so if one-quarter or more of 
the values are tied, a correction factor should be applied to tc, as follows. 
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where 
  T = t3 – t for each treatment sample data set of ties 
  t = the number of tied observations in a group 
  N = total number of observations 
 
 The six-step procedure is used in this evaluation. 
 Step 1. State the hypothesis; it will always be a two-tail test. 
  H0: The k populations are equivalent.  
  HA: At least one of the k populations differs from the others. 
 Step 2. Select α and n. 
 Step 3. Write out the test statistic. 
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 Step 4. State the decision rule. 
 If k = 3 and the sample size of each k group is not more than 5, use Table A.8 
(Critical Values of the Kruskal-Wallis Test). If k > 3 and/or n > 5, use the 2χ  table 
(Table A.5), with k – 1 degrees of freedom. If tc > the critical tabled value, reject H0 
at α. 
 Step 5. Perform the experiment. 
 Step 6. Make the decision, based on Step 4. 
 
 Example 7.7. Three different antimicrobial wound dressings were selected for use 
in a simulated wound care model. The model substrate was a fresh, degermed pig 
skin, incubated at 35–37ºC, with 3 cm incisions made and inoculated with 108 CFU 
of Staphylococcus epidermidis bacteria in a mix of bovine blood serum. The three 
wound dressings – A = 25% Chlorhexidine Gluconate, B = Silver Halide, and C = 
Zinc Oxide – were applied, and one inoculated wound was left untreated to provide a 
baseline value. Each pig skin was placed in a sealed container with distilled water to 
provide moisture and incubated for 24 h. Sampling was performed using the cup 
scrub procedure. The log10 reductions recorded are presented in Table 7.15. 

( )
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Table 7.15 Log10 reduction data and ranks, Example 7.7* 

A = 1 R1 B = 2 R2 C = 3 R3 
3.10 6.5 5.13 12.0 2.73 1.5 
5.70 13.0 4.57 9.0 3.51 8.0 
4.91 10.0 3.01 4.5 3.01 4.5 
3.10 6.5 2.98 3.0 2.73 1.5 
5.01 11.0     

 471 =∑R   5.282 =∑R   5.153 =∑R  

 
n1 = 5  n2 = 4  n3 = 4 

A, B, C = wound dressing types; Ri = rank of values in each wound dressing group, 
lowest to highest, across all groups. 
 

Key Point 
 
* All rank data are used and ranked from smallest to largest values.  In case of 
ties, each tied value is assigned an equal value. For example, if values 15, 16, and 

 
 
 The investigator wants to know if there was a significant difference between the 
antimicrobial wound dressing in terms of bacterial log10 reductions they produce. 
 Step 1. Formulate hypothesis. 
  H0: Group A = Group B = Group C in log10 reductions 
  HA: At least one group differs from the other two 
 Step 2. Set α. 
  The investigator will use α = 0.10. 
 Step 3. Write the test statistic to be used. 

  )(N+  
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c 13
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12 23
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−∑  

 Step 4. Decision rule. 
  If tc > critical value, reject H0. From the Kruskal-Wallis Table (Table A.8), 
for n1 = 5, n2 = n3 = 4, and α = 0.10, the critical value is 4.6187.  
 

Key Point 
 
Find n1, n2, and n3, as well as the critical value corresponding to the α level. The 
critical selected value is ≤ α. 
 

 
 So if tc > 4.6187, reject H0 at α = 0.10. Because nearly one-half of the log10 data 
are ties, if tc is not significant, we will apply the adjustment formula to see if the 
correction makes a difference. 

7. Nonparametric Statistical Methods 

17 are tied at 7.9, the ranks for 15, 16, and 17 would be (15 + 16 + 17)/3 = 16. 
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7.2. Ordinal Scale Data: Rankable
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 Step 5. Compute statistic. 
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 Because tc is not significant, we will use the correction factor adjustment for ties, 

  ( )  = 
 N Nt  

t = t c
adjustedc

−∑− 31
 

where 
  T = t3 – t for each group of sample data 
  t = number of ties 
  T1 = 23 – 2 = 6; two ties within Group 1 
  T2 = 0; no ties within Group 2 
  T3 = 23 – 2 = 6; two ties within Group 3 

  ( ) ( )[ ] 5033.4
13136061

4786.4
3

=
−++−

=adjustedct  

 Step 6. Conclusion. 
 Because tc(adjusted) = 4.5033 >/  4.6187, one cannot reject H0 at α = 0.10. But this is 
so close that for α = 0.15, the H0 hypothesis would be rejected. It is likely, with a 
larger sample size, a difference would be detected. 
 

Key Point 
 
If the 2χ  Table (Table A.5) had been used, the critical value at α = 0.10 would be 

( ) ( ) 605.42
2,10.0

2
13,10.0 ==− χχ . 

 
 
 The Kruskal-Wallis statistic can be particularly valuable in analyzing subjective 
rankings of scores (ordinal data). For example, in skin irritation studies, scores 
observed may range between 0 and 5, 0 being no irritation and 5 being severe. Suppose 
three products are evaluated, and the following irritation scores result (Table 7.16). 

Table 7.16 Log10 reduction data and ranks, Example 7.7 

Product 1 Product 2 Product 3 
0 1 4 
0 1 4 
1 1 3 
2 3 2 
1 2 0 
1 2 1 
1 0 5 
3 1  
 1  

( ) ( )

( )
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 This evaluation would be performed exactly like that in Example 7.7, with the tie 
adjustment formula applied. 

7.2.4 Multiple Contrasts 

In nonparametric statistics, as in parametric statistics, if a difference is detected when 
evaluating more than two sample groups, one cannot know where it lies – that is, 
between what groups of samples – without performing a multiple contrast procedure. 
The Kruskal-Wallis multiple comparison, like the parametric ANOVA contrast, 
provides a 1 – α confidence level for the family of contrasts performed, on a whole. 
 The procedure is straight-forward. First, one computes the sum-of-rank means, 

.R j  Next, a value of α is selected that is generally larger than the customary α = 0.05 
(e.g., 0.15, 0.20, or even 0.25, depending on the number of groups, k). The larger the 
k value, the more difficult it is to detect differences. From a practical standpoint, try 
to limit k to 3, or at most, 4. The next step is to find, on the normal distribution table 
(Table A.2), the value of z that has α/k(k – 1) area to its right and compare the 
possible n(n + 1)/2, | R  R | ji − pairs to the test inequalities. 
 

Key Point 

Contrast Test Formula Value 

Use ( ) ⎟
⎠

⎞
⎜
⎝

⎛
− n

1 + 
n
1 

12
1)+N(Nz

ji
kk 1α  for sample sizes unequal between groups 

and ( ) 6
1)+K(Nz kk 1−α  for sample sizes equal between groups 

 
 The entire contrast design is 

 If ⎟
⎠

⎞
⎜
⎝

⎛− − n
1 + 

n
1 

12
1)+N(N Z > | R  R |

ji
1)/k(kji α reject H0.  

 A significant difference exists between | R  R | ji −  at α. 

 Example 7.7 (cont.). Let us use Example 7.7 data, even though no significant 
difference between the groups was detected. This is only a demonstration of the 
computation of the multiple comparison. However, this time, let us set α = 0.15. 
  4095/0.471 . =  = R  
  1374/5.282 . =  = R  
  8834/5.153 . =  = R  
  n(n – 1)/2 = 3 contrasts possible, which are ( )R R 21 , ( )R R 31 , and ( )R R 32 . 
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7.2. Ordinal Scale Data: Rankable
 
7.2.4.1 First Contrast 

 
( )

 z < | .  . | = | R  R| .
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 Note: The 0.025 z value is found in Table A.2, where 0.5 – 0.025 ≈ 0.4750. The 
value, 0.4750, is roughly equivalent to a tabled value of 1.96 = z. Hence, 2.27 < 1.96 
(2.6125), or 2.27 < 5.1205. Therefore, no difference exists at α = 0.15 between 
chlorhexidine gluconate and silver halide in their antimicrobial effects. 
 
7.2.4.2 Second Contrast 

  52.588340931 =−−  |.  . | = | R  R|  
 Because 5.52 ≤ 5.1205 (the same value as the First Contrast), there is no 
difference between data from Groups 1 and 3 (chlorhexidine gluconate and zinc 
oxide) at α = 0.15. 
 
7.2.4.3 Third Contrast 

  25388313732 . |.. | = | RR| =−−  

  ( ) ( ) ( ) 3974.57538.296.1
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  3974.525.3 >/  
 There is no detectable difference between Groups 2 and 3 (silver halide and zinc 
oxide) at α = 0.15 in their antimicrobial effects. 

7.2.5 Comparing More than Two Related Samples: Ordinal Data 

Analogous to the ANOVA complete block design, in which the replicate samples are 
related blocks, is the Friedman Test. Here, randomization is not across all 
observations, but within blocks of observations. If three treatments are evaluated 
with four replicates, the design looks like the completely randomized design, 
presented again here as Table 7.17. 

Table 7.17 Completely randomized design (randomization over all 3 × 4 = 12 values) 

 Treatments 
 1 2 3 

1 1 1 
2 2 2 
3 3 3 Replicates 

4 4 4 
 
 However, it is not entirely the same. The replication now occurs within each 
block, not on the entire experiment (Table 7.18). 
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Table 7.18 Randomization in blocks (randomization within each of the four blocks) 

  Treatments 
  1 2 3 

1 1 1 1 
2 2 2 2 
3 3 3 3 Blocks/replicates 

4 4 4 4 
 
 The randomization order may look like Table 7.19. 

Table 7.19 Randomization of the complete block 

  Treatments  
  1 2 3  

1 1 1 1 Run Order 
Block 1 

2 2 2 2 Run Order 
Block 2 

3 3 3 3 Run Order 
Block 3 

Blocks 

4 4 4 4 Run Order 
Block 4 

 
 Let’s look at the first replicate block.  

 Treatment 
1 2 3 Block 1 
   

  The randomization occurs between treatments 1, 2, and 3 within Block Replicate 
1. Replicates 2 through 4 follow the same pattern. 
 The critical point is that the treatments in block 1 are related or more 
homogenous to one another than to those in block 2. The variation noise between 
blocks is accounted for by the block effect, not the treatment effect, so the design is 
more powerful than the Kruskal-Wallis Test, if true blocking occurs. The blocks may 
be a specific lot, a specific culture, a specific microbiologist, or a specific test 
subject, for example. 

 The test statistic is ( ) ( )13
1

12 22 +−∑+
= kC

k j
jcχ . 

where ℓ = number of treatments, k = number of blocks, and Cj = sum of the jth 
treatment. If there are many ties (one-quarter or more of the values), a modified 
version of the test statistic should be used. 

 ( ) ( )11 2

1

2
2
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=
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i
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where 
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7.2. Ordinal Scale Data: Rankable
 
 Ti = ∑−∑ ii tt2 , and ti is the number of tied observations in the ith block 
 The six-step procedure can be easily employed. 
 Step 1. State hypotheses. 
 The Friedman statistic is always two-tail. 
  H0: The test groups are equivalent. 
  HA: The above statement is not true. 
 Step 2. Set α and the sample size for each treatment block. 
 Step 3. Write the test statistic to be used. 

  ( ) ( )13
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12
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22 +−∑+
=

=
kC

k j
jcχ  

 Step 4. State the decision rule. 
 If ℓ and k are small (ℓ = 3 to 4) and k = 2 – 9, then exact tables can be used (Table 
A.9, Freidman Exact Table). If not, the χ2 Table with ℓ – 1 degrees of freedom is 
used (Table A.5). 
 Step 5. Perform the experiment. 
 Step 6. Make decision rule. 
 
 Example 7.8. A microbiologist wants to compare skin irritation scores from ten 
test panelists who have swatches of three test product formulations containing 
different emollient levels attached to the skin of their backs for 96 h to simulate 
exposure during long-term veinous catheterization. A standard skin score regimen is 
to be used. 
  0 = no irritation 
  
  2 = moderate irritation 
  3 = frank irritation 
  4 = extreme irritation 
 Step 1. State hypotheses. The Friedman Test is always two-tail. 
  H0: Test formulation 1 = test formulation 2 = test formulation 3 
  HA: At least one formulation differs from the others. 
 Step 2. Set α = 0.05, and samples (blocks) = 3. 

 Step 3. Write the test statistic. ( ) ( )13
1

12
1

22 +−∑−
=

=
kC

k j
jcχ . 

 Step 4. State the decision rule. If 22
tc χχ ≥ , reject H0 at α. In this evaluation, 

ℓ = number of treatments = 3 and k = 10. In order to use the exact Friedman tables, 
the number of replicates, k, can be no more than 9. Hence, we will use the χ2 Table, 
where =2

tχ  ( ) ( ) ( ) 991.52
2;05.0

2
13;05.0

2
1; === −− ttt χχχ α  (Table A.5). So, if 991.522 =≥ tc χχ , 

reject H0 at α = 0.05. 
 Step 5. Perform the experiment. The scores, as follow, resulted from evaluations 
of the skin of each subject (block) for each of the three treatments. 
 
 
 
 
 

1 = mild irritation (redness, swelling, and/or chaffing) 
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  Treatment 
  1 2 3 

1 2 2 4 
2 1 3 3 
3 0 2 2 
4 2 3 3 
5 3 4 3 
6 2 4 3 
7 1 3 4 
8 3 5 3 
9 2 4 4 

Subject/Block 

10 0 2 3 
 
 First, rank the scores in terms of each block. That is, block 1 [2, 2, 4] is now 
[1.5, 1.5, 3]. Table 7.20 provides these rankings, having accounted for ties. 

Table 7.20 Scores ranked by block, Example 7.8 

  Treatment 
 1 2 3 
1 1.5 1.5 3 
2 1 2.5 2.5 
3 1 2.5 2.5 
4 1 2.5 2.5 
5 2.5 3 2.5 
6 1 3 2 
7 1 2 3 
8 2.5 3 2.5 
9 1 2.5 2.5 
10 1 2 3 

Subject/block 

Total C1 = 13.5 C2 = 24.5 C3 = 26.0 
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 Because there are so many ties, the tie correction formula should be used. 
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where Ti = (22 – 2) + (22 – 2) + (22 – 2) + (22 – 2) + (22 – 2) + (22 – 2) + (22 – 2) = 14. 
 Step 6. Make decision rule. 
 Because ( )

2
modcχ = 27.45 ≥ 2

tχ = 5.991, reject H0 at α = 0.05. The three product 
formulations are significantly different in degree of irritating properties at α = 0.05. 
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7.2. Ordinal Scale Data: Rankable
 

Key Point 

Using Exact Tables 

 
Suppose k = 9 and ℓ = 3. Then, the Exact Friedman ANOVA Table (Table A.9) 
could be used. Here, α = 0.05 is not presented, but α = 0.057 is, which 
corresponds to 6. That is, 2

tχ  = 6.00 at α = 0.057. Because ( )
2

modcχ > 6.00, reject H0 
at α = 0.057. 
 

 
 When H0 is rejected, the microbiologist generally will want to determine where 
the differences lie. A series of contrasts can be made to determine the difference in 

  If ( )
6

1+− kCC ji , where z corresponds to ( )1−α . 

Letting α = 0.05, divide α by the number of contrasts, ( )1− , where ℓ = number of 
treatment groups. Hence, ( ) 6133 =− , and 0083.0605.0 = . 
 0.5 – 0.0083 = 0.4917 corresponds to z = 2.39 (Table A.2). 
So, |C1 – C2| = |13.5 – 24.5| = 11 > 2.39 ( 62  = 7.5578. 
Results from test groups 1 and 2 differ. 
 C1 ≠ C2 at α = 0.05 
 |C1 – C3| = |13.5 – 26.0| = 12.5 > 7.5578 
Results from test groups 1 and 3 differ. 
 C1 ≠ C3 at α = 0.05 
 |C2 – C3| = |24.5 – 26.0| = 1.5 >/  7.5578 
Results from test groups 2 and 3 do not differ. 
 C2 = C3 at α = 0.05. 
 

 

C1 is less irritating than both C2 and C3, but C2 and C3 are equivalent (Fig. 7.7). 

Fig. 7.7 Treatment comparisons, Example 7.8 

the normal z distribution. The contrast decision formula is: 

≥ z

3 10)( ))(
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7.3 Interval-Ratio Scale Data 

When one is not sure that interval-ratio data meet the requirements for normal 
distribution (e.g., sample size is small), nonparametric statistical methods offer a 
valuable alternative option. 

7.3.1 Comparing Two Independent Samples: Interval-Ratio Data 

The Mann-Whitney U test, as explained for application to ordinal data (Section 
7.2.1), is a powerful, nonparametric approach to analyzing interval/ratio data. Upper-, 
lower-, and two-tail tests can be performed. Let us, once again, set up the analysis 
using the six-step procedure.  
 
 Step 1. Formulate the hypothesis. 
 

H0: A = B H0: A ≤ B H0: A ≥ B 
HA: A ≠ B HA: A > B HA: A < B 

 
 Step 2. Select the α level. 
 Step 3. Write out the test statistic. 

  ( )
2

1+− AA
Ac

nn R = M  

where nA = number of replicates in group A and RA = sum of the ranks in group A. 
 Step 4. Make the decision rule. 
 

Reject H0, if Mc < M(α)  
Reject H0, if Mc > M(1 – α) = 
nAnB – Mα 

Reject H0, when Mc < 
M(α/2) or Mc > M(1 – α/2) = 
nAnB – M(α/2) 

 
* Use the tabled Mann-Whitney value for M where nA and nB are the sample sizes of 
Groups A and B. 
 
See the Mann-Whitney U Test two-sample comparison for ordinal data for examples 
of upper- and lower-tail Mann-Whitney U tests.  
 Step 5. Compute statistic. 
 Step 6. Conclusion. 
 

 
 Example 7.9. In a pharmaceutical manufacturing plant, a quality control scientist 
measured the dissolution rates of 50 mg tablets produced by two different table 
presses. She wanted to know if they differed significantly in dissolution rates when 
dissolved in a pH 5.2 solution held at 37ºC in a controlled-temperature water bath. 

Two-tail  Upper-tail Lower-tail 

Lower-tail Upper-tail  Two-tail* 
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7.3. Interval-Ratio Scale Data
 
 Table 7.21 presents the dissolution rates in minutes of tablets randomly-sampled 
from each tablet press and the relative rankings of the rates. 

n Tablet press A Rank A Tablet press B Rank B 
 1 2.6 3   3.2 14   
 2 2.9 8.5 3.2 14   
 3 3.1 11.5 3.0 10   
 4 2.7  5.5 3.1 11.5 
 5 2.7  5.5 2.9   8.5 
 6 3.2 14   3.4 18.5 
 7 3.3 16.5 2.7   5.5 
 8 2.7  5.5 3.7 20  
 9 2.5  1.5  RB = 102 
10 3.3 16.5   
11 3.4 18.5   
12 2.5   1.5   

  RA = 108   
 
 Step 1. Formulate the hypothesis. The researcher will use a two-tail test to detect 
a difference. 

0

A

 Step 2. The researcher will use α = 0.05, or α/2 = 0.025. 
 Step 3. The test statistic to use is: 

  ( )
2

1−− AA
Ac

nn R = M  

 Step 4. In this experimental design, it is better to keep nA and nB equal in size, but 
this often is not possible, as is the case here. 
 Mα/2 = 0.05/2 = 0.025; using Table A.6, Mα/2 = 23 at nA = 12 and nB = 8 
 M(1 – α) = nAnB – M(α/2) = 12 × 8 – 23 = 73 
 nA = 12 
 nB = 8 
 M0.025(20, 8) = 42 (Table A.6) 

c 0

 

Fig. 7.8 Example 7.9, Step 4 

are the same. 

the two presses. 

H : A = B; the dissolution rates of the tablets from Tablet Presses A and B 

H : A ≠ B; there is a significant difference in dissolution rates of tablets from 

Table 7.21 Dissolution rates in minutes and rankings, Example 7.9 
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 If M  is < 23 or > 73, the researcher will reject H  at α = 0.05 (Fig. 7.8). 



 Step 5. Perform analysis. 
  The ranks for both groups have already been computed in Table 7.15. 

  ( )
2

1+−= AA
Ac

nnRM  

  ( ) 30
2

11212108 =+−=cM  

 Step 6. Because Mc = 30, which is not less than 23, we cannot reject H0 at α = 
0.05. There is no significant difference in the variability of the dissolution rates of 
the 50 mg tables from presses A and B. 
Note: When either sample size is greater than 20, or both are normal, Table A.2 
should be used for determination of significance. 
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7.3.2 Comparing Two Related or Paired Samples: Interval-Ratio Data 

nonparametric statistic for evaluating two related or paired samples when the 
collected data are interval scale. As with the two-sample matched-pair t test of 
parametric statistics, the Wilcoxon Test converts the two samples, xA and xB, to one 
sample, that we label “D” for difference. 
  iBiAi xxD −=
 The test is then performed on these sample value differences. The data consist of 
n values of Di, where iBiAi xxD −= . Each pair of measurements, iAx  and iBx , are 

iA  and iBx
 The Wilcoxon Matched Pair Test can be used for both two-tail and one-tail tests, 
and the test procedure is straight-forward. 
 First, the signed value difference, iD , of each xA and xB data set is obtained.  
  iBiAi xxD −=  
 Second, the absolute values, |Di|, are ranked from smallest to largest. Finally, the 
original signs from ii BAi xxD −= are reinstated, and the positive ranks (R+) and the 
negative ranks (R–) are summed. Depending upon the direction, upper or lower tail, 
one merely sums the R+ or R– values to derive a Wc value and compares that value to 
the Wilcoxon Table value, Wt, (d in Table A.10), for a specific significance level at 
α. The Wilcoxon Table has one- and two-tail options and requires the n value 
(number of Di values) and the d value (corresponding to the desired α value), which 
is compared to the Wc value (the sum of the R+ or R– values). The tabled values can 
be used for a number of Di values up to n = 25. For a n larger than 25, a correction 
factor can be used that allows use of the normal distribution, values of z. 
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The Wilcoxon matched-pair signed-ranks statistic is a very useful and popular 

 for i = 1, 2, . . . n 
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pair, x , is random. each 

on subjects or groups, etc. that have been paired meaningfully with respect to important, 
but non-measured variables (e.g., sex, weight, organ function, etc.). The sampling of 

1) taken on the same subject or group, etc. (e.g., before/after, pre/post) or 2) taken



7.3. Interval-Ratio Scale Data
 
  The correction factor is: 
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nnW
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where n = number of Di values and Wc = the sum of ranks of the negative or positive 
R values, depending on direction of the test. 
 
7.3.2.1 Ties 

There are two types of ties. The first occurs when specific xA , xB values to be paired 
are equal so the Di is 0. All pairs of iBiA xx = are dropped from the analysis, and n is 
reduced 1 for each pair dropped. The other case is where two or more Dis are equal. 
These ties receive the average rank value. This researcher has not found the tie 
correction formulas to be of much practical value. 
 Using the six-step procedure: 
 Step 1. Specify hypothesis. 
 

H0: xA = xB H0: xA < xB H0: xA > xB 
HA: xA =/  xB HA: xA > xB HA: xA < xB 

 
 Step 2. Specify the α level. 
 Use α/2 for two-tail tests for a specific level of α, as always, and α for single tail 
tests. 
 Step 3. Write out the test statistic to use. 
 For small sample sizes (n < 25, which is the number of Di values), the Wilcoxon 
Table (Table A.10) can be used directly, requiring only n and the sum of the ranks of 
R+ or R− values, depending on the direction of the test. For larger samples, the 
correction factor must be used. That is: 
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 Step 4. Specify the decision rule. 
 

Two-Tail Upper Tail Lower Tail 
The test is dependent on 
the sum of the ranks 
(Wc), R+ and R−, using 
whichever is the smaller. 
If WC is equal to or less 
than the d tabled value at 
α/2, reject H0 at α 

The test uses the sum of 
the ranks of the negative 
values, R– (Wc). If Wc is 
equal to or smaller than 
the d tabled value at α, 
reject H0. 

The test uses the sum of 
the ranks (Wc) of the 
positive values, R+. If 

 is equal to or smaller 
than the d tabled value at 
α, reject H0. 

Two-tail Upper tail  Lower tail 

Wc
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 Step 5. Perform the calculation. 
 Step 6. Formulate the conclusion. 
 
 Example 7.10. A researcher in a skincare laboratory wants to evaluate a 
dermatological lotion’s ability to reduce atopic dermatitis on the skin of the hands 
associated with standard work-related tasks of healthcare workers (e.g., skin 
exposure to hot/cold, to skin cleansers, to wearing surgical/examination gloves over 
periods of time, and to repeated washing). Prior to the use of the test lotion, the 
researcher used a Visioscan device to measure skin scaliness on the hands of ten 
randomly selected healthcare workers. This represented the baseline measurement 
(xA). After a 24-h period of treatment during which the test dermatological lotion was 
used three times, the skin on the hands of the subjects was again measured (xB) for 
degree of skin scaliness. This was an actual in-use study, so healthcare workers went 
about their usual activities in a normal manner. 
 On the basis of the before-and-after Visioscan data processed for a Wilcoxon 
analysis (Table 7.22), the researcher determined if the treatment was effective in 
reducing skin scaliness at an α = 0.05 level of confidence. 

Table 7.22 Visioscan data for degree of skin scaliness, Example 7.10 

Subject 1 2 3 4 5 6 7 8 9 10 

Baseline (pre-
treatment = xA) 54 57 85 81 69 72 83 58 75 87 

treatment = xB 41 53 63 81 73 69 75 54 69 70 

i

Rank ( Di ) 7 3 9 – 3 1 6 3 5 8 

 
 The six-step procedure for this evaluation is: 
 Step 1. Formulate hypothesis. 
 The researcher wants to determine if the lotion treatment reduced skin scaliness. 
For that to occur, the xB values must be significantly lower than the xA values. Hence, 
this is an upper tail test (HA: xA > xB). 
  H0: xA < xB  
  HA: xA > xB The treatment reduces the scaliness of the skin. 
 Step 2. Specify α. Let us set α at 0.05. 
 Because this is an upper tail test, we sum the ranks of the negative values  
(R– values) to calculate Wc, which is expected to be small, if H0 is to be rejected. 
 Step 3. Decision rule. 
 The tabled value of Wt is found from Table A.10 (Wilcoxon Table) for n = 9  
(1 pair value was lost due to a tie) and a one-tail α = 0.05. For this table, like the Sign 
Test, the α value (α″ for two tail tests, and α′ for one tail tests) is not precisely 0.001, 
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Difference (D ) 13 4 22 0 –4 3 8 4 6 17 

Signed Rank (R) +7 +3 +9 – –3 +1 +6 +3 +5 +8 
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 0.01, 0.025, 0.05, or 0.10, so the researcher uses the tabled α value closest to the 
specified α value. In this case, with n = 9 and α΄ = 0.05, the tabled value is d = Wt = 9 
at α = 0.049. Hence, we reject H0 if Wc, the sum of the ranked negative values (R–), 
is less than or equal to 9 at α = 0.049. 
 Step 4. Choose the test statistic. 
 Because this is an upper tail test, we sum the negative rank values (R–) and 
compare the result to Wt = 9. If the R– value = Wc < 9, reject H0 at α = 0.049. 
 Step 5. Perform analysis. 
 The sum of the negative rank values (R–) is 3 = Wc. 
 Step 6. Conclusion. 
 Because the sum of the negative rank values, Wc = 3, is less than the tabled value 
of 9, we can reject at α = 0.05 the H0 hypothesis that the treatment does not 
significantly reduce skin scaliness. 
 
7.3.2.2 Comments 

Suppose this had been a two-tail test at α = 0.05: 
  H0: xA = xB 
  HA: xA =/  xB 
 The sum of negative or positive R values, whichever Ri is smaller, must be less 
than or equal to 7 at α = 0.055 (Table A.10). The sum of R– = 3, so we reject H0 at 
α = 0.055, with a p value less than 0.039. 
 Suppose the test was a lower tail test. 
  H0: xA > xB 
  HA: xA < xB 
 In this case, we use the sum of the positive ranks. If the sum of the positive ranks 
is < 9 with an n of 9, we reject H0 at α = 0.049. 
  Wc – R+ = 7 + 3 + 9 + 1 + 6 + 3 + 5 + 8 = 42. 
  Wc = 42 > Wt = 9, so we cannot reject H0 at α =0.049. 

7.3.3 Independent Samples, n > 2: Interval-Ratio Data 

Use the Kruskal-Wallis Test, as previously discussed in the ordinal data section. 

7.3.4 Related Samples, n > 2: Interval-Ratio Data 

The nonparametric analog to the randomized complete block parametric statistic is 
the Quade Test, when using interval scale data. Although not as well known as the 
Kruskal-Wallis or Friedman Tests, the Quade Test often can be an extremely useful 
tool for the applied statistical researcher. 
 As in the last two tests discussed, the data display for the Quade Test (interval 
data) is: 
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  Treatments 
  1 2 ... ℓ 

1 x11 x12 ... x11 
2 x21 x22 ... x21 
. . . . . 
. . . . . 

Blocks 

. . . . . 
 k xk1 xk2  xkℓ 

 
7.3.4.1 Assumptions 

 
 2. The data are blocked in meaningful ways, such as age, sex, weight, height, 
same subject, etc. 
 3. The data within each block can be ranked – data are at least ordinal. However, 
this microbiologist prefers to use this test with interval data and suggests that, if the 
data are ordinal, the Friedman test be used. 
 4. The sample range within each block can be determined. (There is a smallest 
and largest number in each block; the x values are not all equal.) 
 5. The blocks, themselves, must be rankable by range. 
 6. No significant interaction occurs between blocks and treatments. 
 7. The data are continuous. 
  The test hypothesis is a two-tail test. 
   H0: The test populations are equivalent. 
   HA: They differ in at least one. 
Note: Ties do not adversely affect this test, so a correction factor is not necessary. 
 The F Distribution Table is used in this test. The FT value is Fα[ℓ - 1; (ℓ - 1)(k – 1)]. That 
is, the numerator degrees of freedom are (ℓ – 1) and the denominator degrees of 
freedom are (ℓ – 1)(k – 1). 
 
7.3.4.2 Procedure 

 Step 1. Let R(xij) be the rank from 1 to ℓ of each block, i. For example, in block 
(row) 1, the individual ℓ treatments are ranked. A rank of 1 is provided to the 
smallest and a rank of ℓ to the largest. So step one is to rank all the observations, 
block-by-block, throughout the k blocks. In case of ties, the average rank is used, as 
before. 
 Step 2. Using the original xij values – not the ranks – determine the range of each 
block. The range in block i = MAX (xij) – MIN (xij). There will be k sample ranges, 
one for each block.  
 Step 3. Once the ranges are determined, rank the block ranges, assigning 1 to the 
smallest up to k for the largest. If ties occur, use the average rank. Let R1, R2, . . . Rk 
be the ranks assigned to the 1, 2, . . .k blocks. 
 Step 4. Each block rank, Ri, is then multiplied by the difference between the rank 
within block i, [R(xij)], and the average rank within the blocks, (ℓ + 1)/2, to get the 
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1. The data consist of k mutually-independent blocks of number of treatments, ℓ. 
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 value for Sij, which represents the relative size of each observation within the block, 
adjusted to portray the relative significance of the block in which it appears. 

  
Sij value = ⎥⎦

⎤
⎢⎣
⎡ −

2
1 + 

xRR iji

. 
Each treatment group sum is denoted by ∑=′ .SS ijij  
The test statistic is similar to ANOVA. 

  2

11
ij

j=

k

i=
TOTAL S=SS ∑∑  

If there are no ties in SSTOTAL, the equation is: 

  ( )( ) ( )( )
72

11121 −+++= kkkSSTOTAL  

The treatment sum of squares is: 

  2

1

1
ij

j=
TREATMENT S

k
=SS ∑  

The test statistic is: 

  ( )
SS - SS

SS k = F
TREATMENTTOTAL

TREATMENT
c

1−  

Note: If SSTOTAL = SSTREATMENT (SSTOTAL – SSTREATMENT = 0), use the “0” as if it was in 
the critical region and calculate the critical level as α* = (1/ℓ!)k – 1, where ℓ! is ℓ 
factorial or ℓ × (ℓ – 1) × (ℓ – 2) . . . (ℓ – 1 + 1) (e.g., ℓ = 5; ℓ! = 5 × 4 × 3 × 2 × 1 = 
120). The decision rule is, using the F Table (Table A.4): 
  If Fc > Ft = Fα[ℓ – 1; (ℓ – 1)(k – 1)], reject H0 at α. 
 Again, the six-step procedure is easily adapted to this statistical procedure. 
 Step 1. Formulate hypothesis, which will always be for a two-tail test. 
  H0: The groups are equal. 
  HA: The groups are not equal. 
 Step 2. Choose α. 
 Step 3. Write out the test statistic. 

  ( )
SS - SS

SS 1k = F
TREATMENTTOTAL

TREATMENT
c

−  

 Step 4. Decision rule. 
  If Fc > Ft, reject H0 at α. 
 Step 5. Perform statistic. 
 Step 6. Conclusion. 

 Example 7.11. A microbiologist working with Pseudomonas aeuroginosa wants 
to test the resistance to biofilm formation of several antimicrobial compounds 

configurations of catheter material were introduced in five bioreactors, each of which 
were considered a block for the analysis. After a 72-h growth period, in a continuous 
flow nutrient system, the catheter materials were removed, and the microorganism/ 
biofilm levels were enumerated in terms of log10 colony-forming units. The researcher 
wanted to know if there was a significant difference in microbial adhesion among the 
products. 

applied to the surface of veinous/arterial catheters. Three different sample 
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  Test Catheters 
  1 2 3 

Reactors (Blocks) 1 5.03 3.57 4.90 
 2 3.25 2.17 3.10 
 3 7.56 5.16 6.12 
 4 4.92 3.12 4.92 
 5 6.53 4.23 5.99 

 
 The collected data were tabulated, as above. Because the study was a small pilot 
study with few replicate blocks, and the blocked data varied so much, a nonparametric 
model was selected for the analysis. 
 Step 1. Formulate hypothesis. 
  H0: Catheter material 1 = 2 = 3 in microbial adherence 
  HA: At least one catheter material is different 
 Step 2. Specify α. 
  Because this was a small study, α was selected at 0.10. 
 Step 3. Write out the test statistic. 
  The test statistic to be used is: 

  ( )
SS - SS

SS 1k = F
TREATMENTTOTAL

TREATMENT
c

−  

 Step 4. Present decision rule. 

 Step 5. Perform computation; the collected results, ranked within blocks, are 
presented below. 
 

  Test Catheter 
  1 2 3 

1 5.03 (3) 3.57 (1) 4.90 (2) 
2 3.25 (3) 2.17 (1) 3.10 (2) 
3 7.56 (3) 5.16 (1) 6.12 (2) 
4 4.92 (2.5) 3.12 (1) 4.92 (2.5) 

Block 
(reactor) 

5 6.53 (3) 4.23 (1) 5.99 (2) 
 
 Step 6. Conclusion. 
 
 Step 1. First rank the within block values in 1, 2, 3, .... order. Above, the ranks 
are in parentheses to the right of each test value. 
 Step 2. Next, determine range of actual values in each block, which is the high 
value minus the low value, and record results in a work table (Table 7.17). 
  4 = 4.92 – 3.12 = 1.80 
          2 = 3.25 – 2.17 = 1.08  5 = 6.53 – 4.23 = 2.30 
           3 = 7.56 – 5.16 = 2.40 

Block 1 = 5.03 – 3.57 = 1.46 

  If Fc > Ft, reject H0 at α = 0.10. Ft = Fα[ℓ – 1; (ℓ – 1)(k – 1)], where numerator degrees 
of freedom = ℓ– 1 = 3 – 1 = 2, denominator degrees of freedom = (ℓ – 1)(k – 1) =  
(3 – 1)(5 – 1) = 8, and α = 0.10. Ft[0.10(2, 8)] = 3.11. Therefore, if Fc > Ft = 3.11, reject 
H0 at α = 0.10. 
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  Step 3. Next, rank the blocks, and enter the ranks into the work table (Table 
7.23). 

Table 7.23 Work table, Example 7.11 

(Step 4) Catheter 
Block 

(Step 2) 
Sample block 

range 

(Step 3) 
Block 

rank (Ri) 
1 2 3 

1 1.46 2 2 
2 1.08 1 1 
3 2.40 5 5 
4 1.80 3 1.5 
5 2.30 4 4 
   1.S′  = 13.5 2.S′ 3.S′  = 1.5 

 

 Step 4. Determine x each for 
2

1+ - )xR( R = S ijijiij ⎥⎦
⎤

⎢⎣
⎡ , and enter those values into 

  2)
2
133(211  = + = S −  

  2)21(212 −−  =  = S  
  0)22(213  =  = S −  
  1)23(121  =  = S −  
  1)21(122 −−  =  = S  
  0)22(123  =  = S −  
  5)23(531  =  = S −  
  5)21(532 −−  =  = S  
  0)22(533  =  = S −  
  5.1)2.52(341  =  = S −  
  3)21(342 −−  =  = S  
  5.1)2.52(343  =  = S −  
  4)23(451  =  = S −  
  4)21(452 −−  =  = S  
  0)22(453  =  = S −  
 TOTAL 
  2

11
ij

j=

k

i=
TOTAL S=SS ∑∑  

  ( ) ( ) 011022 222222 +++++= −−  
  ( ) ( ) ( ) 222222 51351055 .++.++++ −−−  

Step 5. Determine SS

  ( ) 044 222 +++ −  

–2 0 
–1 0 
–5 0 
–3 1.5 
–4 0 

the work table (Table 7.23). 
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 = –15.0 



 SSTOTAL = 105.50 

 SSTREATMENT = ( )[ ] 90815115513
5
11 2222

1
. = .++. =S

k ij
j=

−∑  

 Next, compute F . 

 ( ) ( ) 8813
908150105

9081151 . = 
..

.  = 
SSSS

SS k= F
TREATMENTTOTAL

TREATMENT
c −

−
−

−  

 
 Step 6. Conclusion. 
 Because Fc = 13.88 > F  = 3.11, the H0 hypothesis is rejected at α = 0.10. At least 
one catheter is different from the others. 
 
7.3.4.3 Multiple Contrasts 

As before, multiple contrasts are conducted only when H0 is rejected. The 
computation formula is for all possible ℓ(ℓ – 1)/2 contrast combinations. If |Si – Sj| is 

greater than 
1)-1)(k-(

)SS - SS( 2k t TREATMENTTOTAL
/2α , conclude the difference is significant at α. 

 Let us contrast the catheter products. 

 ( )
( )( )

( ) ( )
( ) 43145
42

90815010552
11

2 . = .  .  = 
k
SS  SSk TREATMENTTOTAL −
−−

−

 
8050112100t ),.() df)(k-- with (/.  

 So, ( )( ) ( ) 101043145861
11

2
2 . = .. = 

k
)SS  SSk ( t TREATMENTTOTAL

α/ −−
−  

 The catheter product contrasts are: 
 
  1 vs 2 = ⏐13.5 – (–15)⏐ = 28.5 > 10.10  Significant 
  1 vs 3 = ⏐13.5 – 1.5⏐ = 12 > 10.10   Significant 
  2 vs 3 = ⏐–15 – 1.5⏐ = 16.5 > 10.10  Significant 
 
 Each of the catheter products is significantly different from the others, at α = 0.10. 
 

 = 1.86 = t
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Appendix 
Tables of Mathematical Values 



Table A.1 Student’s t table (percentage points of the t distribution) 

     α 
v .40 .25 .10 .05 .025 .01 .005 .0025 .001 .0005 

1 .325 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62 
2 .289 .816 1.886 2.920 4.303 6.965 9.925 14.089 23.326 31.598 
3 .277 .765 1.638 2.353 3.182 4.541 5.841 7.453 10.213 12.924 
4 .271 .741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610 
5 .267 .727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869 
6 .265 .727 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959 
7 .263 .711 1.415 1.895 2.365 2.998 3.499 4.019 4.785 5.408 
8 .262 .706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041 
9 .261 .703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781 

10 .260 .700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587 
11 .260 .697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437 
12 .259 .695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318 
13 .259 .694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221 
14 .258 .692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140 
15 .258 .691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073 
16 .258 .690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015 
17 .257 .689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965 
18 .257 .688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922 
19 .257 .688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883 
20 .257 .687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850 
21 .257 .686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819 
22 .256 .686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792 
23 .256 .685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767 
24 .256 .685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745 
25 .256 .684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725 
26 .256 .684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707 
27 .256 .684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690 
28 .256 .683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674 
29 .256 .683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659 
30 .256 .683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646 
40 .255 .681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551 
60 .254 .679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460 

120 .254 .677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373 
∞ .253 .674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291 

  

 
 

        v = degrees of freedom 
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normal curve from 0 to z]) 

 
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359 
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753 
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141 
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517 
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879 
0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224 
0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549 
0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852 
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133 
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389 
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621 
1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830 
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015 
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177 
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319 
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441 
1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545 
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633 
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706 
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767 
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817 
2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857 
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890 
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916 
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936 
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952 
2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964 
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974 
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981 
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986 
3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990 

 
 

 
 
 
 
 
 

Appendix. z-table

Table A.2 z-table (normal curve areas [entries in the body of the table give the area under the standard 
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Table A.4 F distribution tables 

F0.25 (V1, V2) 
 1
 
 
    v1
v2    

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞ 

1 5.83 7.50 8.20 8.58 8.82 8.98 9.10 9.19 9.26 9.32 9.41 9.49 9.58 9.63 9.67 9.71 9.76 9.80 9.85
2 2.57 3.00 3.15 3.23 3.28 3.31 3.34 3.35 3.37 3.38 3.39 3.41 3.43 3.43 3.44 3.45 3.46 3.47 3.48
3 2.02 2.28 2.36 2.39 2.41 2.42 2.43 2.44 2.44 2.44 2.45 2.46 2.46 2.46 2.47 2.47 2.47 2.47 2.47
4 1.81 2.00 2.05 2.06 2.07 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08
5 1.69 1.85 1.88 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.88 1.88 1.88 1.88 1.87 1.87 1.87
6 1.62 1.76 1.78 1.79 1.79 1.78 1.78 1.78 1.77 1.77 1.77 1.76 1.76 1.75 1.75 1.75 1.74 1.74 1.74
7 1.57 1.70 1.72 1.72 1.71 1.71 1.70 1.70 1.70 1.69 1.68 1.68 1.67 1.67 1.66 1.66 1.65 1.65 1.65
8 1.54 1.66 1.67 1.66 1.66 1.65 1.64 1.64 1.63 1.63 1.62 1.62 1.61 1.60 1.60 1.59 1.59 1.58 1.58
9 1.51 1.62 1.63 1.63 1.62 1.61 1.60 1.60 1.59 1.59 1.58 1.57 1.56 1.56 1.55 1.54 1.54 1.53 1.53

10 1.49 1.60 1.60 1.59 1.59 1.58 1.57 1.56 1.56 1.55 1.54 1.53 1.52 1.52 1.51 1.51 1.50 1.49 1.48
11 1.47 1.58 1.58 1.57 1.56 1.55 1.54 1.53 1.53 1.52 1.51 1.50 1.49 1.49 1.48 1.47 1.47 1.46 1.45
12 1.46 1.56 1.56 1.55 1.54 1.53 1.52 1.51 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.45 1.44 1.43 1.42
13 1.45 1.55 1.55 1.53 1.52 1.51 1.50 1.49 1.49 1.48 1.47 1.46 1.45 1.44 1.43 1.42 1.42 1.41 1.40
14 1.44 1.53 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.44 1.43 1.42 1.41 1.41 1.40 1.39 1.38
15 1.43 1.52 1.52 1.51 1.49 1.48 1.47 1.46 1.46 1.45 1.44 1.43 1.41 1.41 1.40 1.39 1.38 1.37 1.36
16 1.42 1.51 1.51 1.50 1.48 1.47 1.46 1.45 1.44 1.44 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.35 1.34
17 1.42 1.51 1.50 1.49 1.47 1.46 1.45 1.44 1.43 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.35 1.34 1.33
18 1.41 1.50 1.49 1.48 1.46 1.45 1.44 1.43 1.42 1.42 1.40 1.39 1.38 1.37 1.36 1.35 1.34 1.33 1.32
19 1.41 1.49 1.49 1.47 1.46 1.44 1.43 1.42 1.41 1.41 1.40 1.38 1.37 1.36 1.35 1.34 1.33 1.32 1.30
20 1.40 1.49 1.48 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.39 1.37 1.36 1.35 1.34 1.33 1.32 1.31 1.29
21 1.40 1.48 1.48 1.46 1.44 1.43 1.42 1.41 1.40 1.39 1.38 1.37 1.35 1.34 1.33 1.32 1.31 1.30 1.28
22 1.40 1.48 1.47 1.45 1.44 1.42 1.41 1.40 1.39 1.39 1.37 1.36 1.34 1.33 1.32 1.31 1.30 1.29 1.28
23 1.39 1.47 1.47 1.45 1.43 1.42 1.41 1.40 1.39 1.38 1.37 1.35 1.34 1.33 1.32 1.31 1.30 1.28 1.27
24 1.39 1.47 1.46 1.44 1.43 1.41 1.40 1.39 1.38 1.38 1.36 1.35 1.33 1.32 1.31 1.30 1.29 1.28 1.26
25 1.39 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 1.36 1.34 1.33 1.32 1.31 1.29 1.28 1.27 1.25
26 1.38 1.46 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.37 1.35 1.34 1.32 1.31 1.30 1.29 1.28 1.26 1.25
27 1.38 1.46 1.45 1.43 1.42 1.40 1.39 1.38 1.37 1.36 1.35 1.33 1.32 1.31 1.30 1.28 1.27 1.26 1.24
28 1.38 1.46 1.45 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.25 1.24
29 1.38 1.45 1.45 1.43 1.41 1.40 1.38 1.37 1.36 1.35 1.34 1.32 1.31 1.30 1.29 1.27 1.26 1.25 1.23
30 1.38 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.36 1.35 1.34 1.32 1.30 1.29 1.28 1.27 1.26 1.24 1.23
40 1.36 1.44 1.42 1.40 1.39 1.37 1.36 1.35 1.34 1.33 1.31 1.30 1.28 1.26 1.25 1.24 1.22 1.21 1.19
60 1.35 1.42 1.41 1.38 1.37 1.35 1.33 1.32 1.31 1.30 1.29 1.27 1.25 1.24 1.22 1.21 1.19 1.17 1.15

120 1.34 1.40 1.39 1.37 1.35 1.33 1.31 1.30 1.29 1.28 1.26 1.24 1.22 1.21 1.19 1.18 1.16 1.13 1.10

2

∞ 1.32 1.39 1.37 1.35 1.33 1.31 1.29 1.28 1.27 1.25 1.24 1.22 1.19 1.18 1.16 1.14 1.12 1.08 1.00
 (Continued)  
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F0.10 (V1, V2) 
 1
 
 

   v1
v2   

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞ 

1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.10
6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06
11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80
15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76
16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63
20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61
21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.96 1.92 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53
25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52
26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.50
27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49
28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48
29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47
30 2.88 2.49 2.28 2.14 2.03 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46
40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19

2

∞ 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.00
 (Continued) 
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Table A.4 F distribution tables 

F0.05 (V1, V2) 
 1
 
 

   v1
v2   

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞ 

1 161.40 199.50 215.70 224.60 230.20 234.00 236.80 238.90 240.50 241.90 243.90 245.90 248.00 249.10 250.10 251.10 252.20 253.30 254.30
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63 
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36 
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34  2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.55 1.43 1.35 1.25

2

∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
 (Continued) 
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Table A.4 F distribution tables 

F0.025 (V1, V2) 
 1
 
 

   v1
v2   

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞ 

1 647.80 799.50 864.20 899.60 921.80 937.10 948.20 956.70 963.30 968.60 976.70 984.90 993.10 997.20 1001.0 1006.0 1010.0 1014.0 1018.0
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.49 39.50
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95 13.90
4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31 8.26
5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07 6.02
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.90 4.85
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.57 4.47 4.42 4.36 4.31 4.25 4.20 4.14
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73 3.67
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39 3.33

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14 3.08
11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.94 2.88
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79 2.72
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66 2.60
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55 2.49
15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46 2.40
16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38 2.32
17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.32 2.25
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.26 2.19
19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.20 2.13
20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16 2.09
21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11 2.04
22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.08 2.00
23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.57 2.47 2.36 2.30 2.24 2.18 2.11 2.04 1.97
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01 1.94
25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.51 2.41 2.30 2.24 2.18 2.12 2.05 1.98 1.91
26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95 1.88
27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 2.47 2.36 2.25 2.19 2.13 2.07 2.00 1.93 1.85
28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91 1.83
29 5.59 4.20 1.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89 1.81
30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87 1.79
40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.29 2.18 2.07 2.01 1.94 1.88 1.80 1.72 1.64
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58 1.48

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.05 1.94 1.82 1.76 1.69 1.61 1.53 1.43 1.31

2

∞ 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.27 1.00
 (Continued) 
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Table A.4 F distribution tables 

F0.01 (V1, V2) 
 1
 
 

   v1
v2   

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞ 

1 4052.0 4999.5 5403.0 5625.0 5764.0 5859.0 5928.0 5982.0 6022.0 6056.0 6106.0 6157.0 6209.0 6235.0 6261.0 6287.0 6313.0 6339.0 6366.0
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.00 26.50 26.41 26.32 26.22 26.13
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00
15 8.68 6.36 5.42 4.89 4.36 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38

2

∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00

Degrees of freedom for the numerator (v ) 

D
eg

re
es

 fr
ee

do
m

 d
en

om
in

at
or

 (v
) 
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Table A.5 Chi square table 

    α = 0.10 0.05 0.025 0.01 0.005 
df 1–α = 

χ2
0.005 

χ2
0.025 χ2

0.05 χ2
0.90 χ2

0.95 χ2
0.975 χ2

0.99 χ2
0.995 

1 0.0000393 0.000982 0.00393 2.706 3.841 5.024 6.635 7.879 
2 0.0100 0.0506 0.103 4.605 5.991 7.378 9.210 10.597  
3 0.0717 0.216 0.352 6.251 7.815 9.348 11.345 12.838 
4 0.207 0.484 0.711 7.779 9.488 11.143 13.277 14.860 
5 0.412 0.831 1.145 9.236 11.070 12.832 15.086 16.750 
6 0.676 1.237 1.635 10.645 12.592 14.449 16.812 18.548 
7 0.989 1.690 2.167 12.017 14.067 16.013 18.475  20.278 
8 1.344 2.180 2.733 13.362 15.507 17.535 20.090  21.955 
9 1.735 2.700 3.325 14.684 16.919 19.023 21.666  23.589 

10 2.156 3.247 3.940 15.987 18.307 20.483 23.209  25.188 
11 2.603 3.816 4.575 17.275 19.675 21.920 24.725 26.757 
12 3.074 4.404 5.226 18.549 21.026 23.336 26.217 28.300 
13 3.565 5.009 5.892 19.812 22.362 24.736 27.688  29.819 
14 4.075 5.629 6.571 21.064 23.685 26.119 29.141 31.319 
15 4.601 6.262 7.261 22.307 24.996 27.488 30.578 32.801 
16 5.142 6.908 7.962 23.542 26.296 28.845 32.000 34.267 
17 5.697 7.564 8.672 24.769 27.587 30.191 33.409 35.718 
18 6.265 8.231 9.390 25.989 28.869 31.526 34.805 37.156 
19 6.844 8.907 10.117 27.204 30.144 32.852 36.191 38.582 
20 7.434 9.591 10.851 28.412 31.410 34.170 37.566 39.997 
21 8.034 10.283 11.591 29.615 32.671 35.479 38.932 41.401 
22 8.643 10.982 12.338 30.813 33.924 36.781 40.289 42.796 
23 9.260 11.688 13.091 32.007 35.172 38.076 41.638 44.181 
24 9.886 12.401 13.848 33.196 36.415 39.364 42.980 45.558 
25 10.520 13.120 14.611 34.382 37.652 40.646 44.314 46.928 
26 11.160 13.844 15.379 35.563 38.885 41.923 45.642 48.290 
27 11.808 14.573 16.151 36.741 40.113 43.194 46.963 49.645 
28 12.461 15.308 16.928 37.916 41.337 44.461 48.278 50.993 
29 13.121 16.047 17.708 39.087 42.557 45.722 49.588 52.336 
30 13.787 16.791 18.493 40.256 43.773 46.979 50.892 53.672 
35 17.192 20.569 22.465 46.059 49.802 53.203 57.342 60.275 
40 20.707 24.433 26.509 51.805 55.758 59.342 63.691 66.766 
45 24.311 28.366 30.612 57.505 61.656 65.410 69.957 73.166 
50 27.991 32.357 34.764 63.167 67.505 71.420 76.154 79.490 
60 35.535 40.482 43.188 74.397 79.082 83.298 88.379  91.952 
70 43.275 48.758 51.739 85.527 90.531 95.023 100.425 104.215 
80 51.172 57.153 60.391 96.578 101.879 106.629 112.329 116.321 
90 59.196 65.647 69.126 107.565 113.145 118.136 124.116 128.299 

100 67.328 74.222 77.929 118.498 124.342 129.561 135.807 140.169 
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Table A.7 Binomial probability distribution 

q p t
n= P) n,|P(t -tnt
⎟
⎠
⎞⎜

⎝
⎛  

 
n  = 1 

   p 
t   

0 0.9900 0.9800 0.9700 0.9600 0.9500 0.9400 0.9300 0.9200 0.9100 0.9000 
1 .0100 .0200 .0300 .0400 .0500 .0600 .0700 .0800 0.0900 0.1000 

 0.11 0.12 0.13  0.14 0.15  0.16  0.17 0.18 0.19 0.20 

0 0.8900 0.8800 0.8700 0.8600 0.8500 0.8400 0.8300 0.8200 0.8100 0.8000 
1 0.1100 0.1200 0.1300 0.1400 0.1500 0.1600 .1700 0.1800 0.1900 0.2000 

 0.21 0.22 0.23 0.24 0.25  0.26 0.27 0.28 0.29 0.30 

0 0.7900 0.7800 0.7700 0.7600 0.7500 0.7400 .7300 0.7200 0.7100 0.7000 
1 0.2100 0.2200 0.2300 0.2400 0.2500 0.2600 .2700 0.2800 0.2900 0.3000 

 0.31 0.32 0.33  0.34 0.35 0.36 0.37 0.38  0.39 0.40 

0 0.6900 0.6800 0.6700 0.6600 .6500 0.6400 0.6300 0.6200 0.6100 0.6000 
1 0.3100 0.3200 0.3300 0.3400 .3500 0.3600 0.3700 0.3800 0.3900 0.4000 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47  0.48 0.49 0.50 

0 0.5900 0.5800 0.5700 0.5600 0.5500 0.5400 0.5300 0.5200 0.5100 0.5000 
1 0.4100 0.4200 0.4300 0.4400 0.4500 0.4600 0.4700 0.4800 0.4900 0.5000 

n = 2 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0 0.9801 0.9604 0.9409 0.9216 0.9025 0.8836 0.8649 0.8464 0.8281 0.8100 
1 0.0198 0.0392 0.0582 0.0768 0.0950 0.1128 0.1302 0.1472 0.1638 0.1800 
2 0.0001 0.0004 0.0009 0.0016 0.0025 0.0036 0.0049 0.0064 0.0081 0.0100 

 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

0 0.7921 0.7744 0.7569 0.7396 0.7225 0.7056 0.6889 0.6724 0.6561 0.6400 
1 0.1958 0.2112 0.2262 0.2408 0.2550 0.2688 0.2822 0.2952 0.3078 0.3200 
2 0.0121 0.0144 0.0169 0.0196 0.0225 0.0256 0.0289 0.0324 0.0361 0.0400 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30

0 0.6241 0.6084 0.5929 0.5776 0.5625 0.5476 0.5329 0.5184 0.5041 0.4900 
1 0.3318 0.3432 0.3542 0.3648 0.3750 0.3848 0.3942 0.4032 0.4118 0.4200 
2 0.0441 0.0484 0.0529 0.0576 0.0625 0.0676 0.0729 0.0784 0.0841 0.0900 

(Continued)  
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 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.4761 0.4624 0.4489 0.4356 0.4225 0.4096 0.3969 0.3844 0.3721 0.3600 
1 0.4278 0.4352 0.4422 0.4488 0.4550 0.4608 0.4662 0.4712 0.4758 0.4800 
2 0.0961 0.1024 0.1089 0.1156 0.1225 0.1296 0.1369 0.1444 0.1521 0.1600 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.3481 0.3364 0.3249 0.3136 0.3025 0.2916 0.2809 0.2704 0.2601 0.2500 
1 0.4838 0.4872 0.4902 0.4928 0.4950 0.4968 0.4982 0.4992 0.4998 0.5000 
2 0.1681 0.1764 0.1849 0.1936 0.2025 0.2116 0.2209 0.2304 0.2401 0.2500 

n  = 3 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.9704 0.9412 0.9127 0.8847 0.8574 0.8306 0.8044 0.7787 0.7536 0.7290 
1 0.0294 0.0576 0.0847 0.1106 0.1354 0.1590 0.1816 0.2031 0.2236 0.2430 
2 0.0003 0.0012 0.0026 0.0046 0.0071 0.0102 0.0137 0.0177 0.0221 0.0270 
3 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0005 0.0007 0.0010 

 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.7050 0.6815 0.6585 0.6361 0.6141 0.5927 0.5718 0.5514 0.5314 0.5120 
1 0.2614 0.2788 0.2952 0.3106 0.3251 0.3387 0.3513 0.3631 0.3740 0.3840 
2 0.0323 0.0380 0.0441 0.0506 0.0574 0.0645 0.0720 0.0797 0.0877 0.0960 
3 0.0013 0.0017 0.0022 0.0027 0.0034 0.0041 0.0049 0.0058 0.0069 0.0080 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.4930 0.4746 0.4565 0.4390 0.4219 0.4052 0.3890 0.3732 0.3579 0.3430 
1 0.3932 0.4015 0.4091 0.4159 0.4219 0.4271 0.4316 0.4355 0.4386 0.4410 
2 0.1045 0.1133 0.1222 0.1313 0.1406 0.1501 0.1597 0.1693 0.1791 0.1890 
3 0.0093 0.0106 0.0122 0.0138 0.0156 0.0176 0.0197 0.0220 0.0244 0.0270 

 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.3285 0.3144 0.3008 0.2875 0.2746 0.2621 0.2500 0.2383 0.2270 0.2160 
1 0.4428 0.4439 0.4444 0.4443 0.4436 0.4424 0.4406 0.4382 0.4354 0.4320 
2 0.1989 0.2089 0.2189 0.2289 0.2389 0.2488 0.2587 0.2686 0.2783 0.2880 
3 0.0298 0.0328 0.0359 0.0393 0.0429 0.0467 0.0507 0.0549 0.0593 0.0640 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.2054 0.1951 0.1852 0.1756 0.1664 0.1575 0.1489 0.1406 0.1327 0.1250 
1 0.4282 0.4239 0.4191 0.4140 0.4084 0.4024 0.3961 0.3894 0.3823 0.3750 
2 0.2975 0.3069 0.3162 0.3252 0.3341 0.3428 0.3512 0.3594 0.3674 0.3750 
3 0.0689 0.0741 0.0795 0.0852 0.0911 0.0973 0.1038 0.1106 0.1176 0.1250 

(Continued)  
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n = 4 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.9606 0.9224 0.8853 0.8493 0.8145 0.7807 0.7481 0.7164 0.6857 0.6561 
1 0.0388 0.0753 0.1095 0.1416 0.1715 0.1993 0.2252 0.2492 0.2713 0.2916 
2 0.0006 0.0023 0.0051 0.0088 0.0135 0.0191 0.0254 0.0325 0.0402 0.0486 
3 0.0000 0.0000 0.0001 0.0002 0.0005 0.0008 0.0013 0.0019 0.0027 0.0036 
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 

 0.11 0.12 0.13 0.14 0.15  0.16 0.17 0.18 0.19 0.20 

0 0.6274 0.5997 0.5729 0.5470 0.5220 0.4979 0.4746 0.4521 0.4305 0.4096 
1 0.3102 0.3271 0.3424 0.3562 0.3685 0.3793 0.3888 0.3970 0.4039 0.4096 
2 0.0575 0.0669 0.0767 0.0870 0.0975 0.1084 0.1195 0.1307 0.1421 0.1536 
3 0.0047 0.0061 0.0076 0.0094 0.0115 0.0138 0.0163 0.0191 0.0222 0.0256 
4 0.0001 0.0002 0.0003 0.0004 0.0005 0.0007 0.0008 0.0010 0.0013 0.0016 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.3895 0.3702 0.3515 0.3336 0.3164 0.2999 0.2840 0.2687 0.2541 0.2401 
1 0.4142 0.4176 0.4200 0.4214 0.4219 0.4214 0.4201 0.4180 0.4152 0.4116 
2 0.1651 0.1767 0.1882 0.1996 0.2109 0.2221 0.2331 0.2439 0.2544 0.2646 
3 0.0293 0.0332 0.0375 0.0420 0.0469 0.0520 0.0575 0.0632 0.0693 0.0756 
4 0.0019 0.0023 0.0028 0.0033 0.0039 0.0046 0.0053 0.0061 0.0071 0.0081 

 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.2267 0.2138 0.2015 0.1897 0.1785 0.1678 0.1575 0.1478 0.1385 0.1296 
1 0.4074 0.4025 0.3970 0.3910 0.3845 0.3775 0.3701 0.3623 0.3541 0.3456 
2 0.2745 0.2841 0.2933 0.3021 0.3105 0.3185 0.3260 0.3330 0.3396 0.3456 
3 0.0822 0.0891 0.0963 0.1038 0.1115 0.1194 0.1276 0.1361 0.1447 0.1536 
4 0.0092 0.0105 0.0119 0.0134 0.0150 0.0168 0.0187 0.0209 0.0231 0.0256 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.1212 0.1132 0.1056 0.0983 0.0915 0.0850 0.0789 0.0731 0.0677 0.0625 
1 0.3368 0.3278 0.3185 0.3091 0.2995 0.2897 0.2799 0.2700 0.2600 0.2500 
2 0.3511 0.3560 0.3604 0.3643 0.3675 0.3702 0.3723 0.3738 0.3747 0.3750 
3 0.1627 0.1719 0.1813 0.1908 0.2005 0.2102 0.2201 0.2300 0.2400 0.2500 
4 0.0283 0.0311 0.0342 0.0375 0.0410 0.0448 0.0488 0.0531 0.0576 0.0625 

n = 5 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.9510 0.9039 0.8587 0.8154 0.7738 0.7339 0.6957 0.6591 0.6240 0.5905 
1 0.0480 0.0922 0.1328 0.1699 0.2036 0.2342 0.2618 0.2866 0.3086 0.3280 
2 0.0010 0.0038 0.0082 0.0142 0.0214 0.0299 0.0394 0.0498 0.0610 0.0729 
3 0.0000 0.0001 0.0003 0.0006 0.0011 0.0019 0.0030 0.0043 0.0060 0.0081 
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0004 
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 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.5584 0.5277 0.4984 0.4704 0.4437 0.4182 0.3939 0.3707 0.3487 0.3277 
1 0.3451 0.3598 0.3724 0.3829 0.3915 0.3983 0.4034 0.4069 0.4089 0.4096 
2 0.0853 0.0981 0.1113 0.1247 0.1382 0.1517 0.1652 0.1786 0.1919 0.2048 
3 0.0105 0.0134 0.0166 0.0203 0.0244 0.0289 0.0338 0.0392 0.0450 0.0512 
4 0.0007 0.0009 0.0012 0.0017 0.0022 0.0028 0.0035 0.0043 0.0053 0.0064 
5 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.3077 0.2887 0.2707 0.2536 0.2373 0.2219 0.2073 0.1935 0.1804 0.1681 
1 0.4090 0.4072 0.4043 0.4003 0.3955 0.3898 0.3834 0.3762 0.3685 0.3602 
2 0.2174 0.2297 0.2415 0.2529 0.2637 0.2739 0.2836 0.2926 0.3010 0.3087 
3 0.0578 0.0648 0.0721 0.0798 0.0879 0.0962 0.1049 0.1138 0.1229 0.1323 
4 0.0077 0.0091 0.0108 0.0126 0.0146 0.0169 0.0194 0.0221 0.0251 0.0284 
5 0.0004 0.0005 0.0006 0.0008 0.0010 0.0012 0.0014 0.0017 0.0021 0.0024 

 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.1564 0.1454 0.1350 0.1252 0.1160 0.1074 0.0992 0.0916 0.0845 0.0778 
1 0.3513 0.3421 0.3325 0.3226 0.3124 0.3020 0.2914 0.2808 0.2700 0.2592 
2 0.3157 0.3220 0.3275 0.3323 0.3364 0.3397 0.3423 0.3441 0.3452 0.3456 
3 0.1418 0.1515 0.1613 0.1712 0.1811 0.1911 0.2010 0.2109 0.2207 0.2304 
4 0.0319 0.0357 0.0397 0.0441 0.0488 0.0537 0.0590 0.0646 0.0706 0.0768 
5 0.0029 0.0034 0.0039 0.0045 0.0053 0.0060 0.0069 0.0079 0.0090 0.0102 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.0715 0.0656 0.0602 0.0551 0.0503 0.0459 0.0418 0.0380 0.0345 0.0312 
1 0.2484 0.2376 0.2270 0.2164 0.2059 0.1956 0.1854 0.1755 0.1657 0.1562 
2 0.3452 0.3442 0.3424 0.3400 0.3369 0.3332 0.3289 0.3240 0.3185 0.3125 
3 0.2399 0.2492 0.2583 0.2671 0.2757 0.2838 0.2916 0.2990 0.3060 0.3125 
4 0.0834 0.0902 0.0974 0.1049 0.1128 0.1209 0.1293 0.1380 0.1470 0.1562 
5 0.0116 0.0131 0.0147 0.0165 0.0185 0.0206 0.0229 0.0255 0.0282 0.0312 

n  = 6 
   p 
t   0.01 0.02 0.03 0.04  0.05 0.06 0.07  0.08  0.09 0.10 

0 0.9415 0.8858 0.8330 0.7828 0.7351 0.6899 0.6470 0.6064 0.5679 0.5314 
1 0.0571 0.1085 0.1546 0.1957 0.2321 0.2642 0.2922 0.3164 0.3370 0.3543 
2 0.0014 0.0055 0.0120 0.0204 0.0305 0.0422 0.0550 0.0688 0.0833 0.0984 
3 0.0000 0.0002 0.0005 0.0011 0.0021 0.0036 0.0055 0.0080 0.0110 0.0146 
4 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0003 0.0005 0.0008 0.0012 
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 
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 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.4970 0.4644 0.4336 0.4046 0.3771 0.3513 0.3269 0.3040 0.2824 0.2621 
1 0.3685 0.3800 0.3888 0.3952 0.3993 0.4015 0.4018 0.4004 0.3975 0.3932 
2 0.1139 0.1295 0.1452 0.1608 0.1762 0.1912 0.2057 0.2197 0.2331 0.2458 
3 0.0188 0.0236 0.0289 0.0349 0.0415 0.0486 0.0562 0.0643 0.0729 0.0819 
4 0.0017 0.0024 0.0032 0.0043 0.0055 0.0069 0.0086 0.0106 0.0128 0.0154 
5 0.0001 0.0001 0.0002 0.0003 0.0004 0.0005 0.0007 0.0009 0.0012 0.0015 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.2431 0.2552 0.2084 0.1927 0.1780 0.1642 0.1513 0.1393 0.1281 0.1176 
1 0.3877 0.3811 0.3735 0.3651 0.3560 0.3462 0.3358 0.3251 0.3139 0.3025 
2 0.2577 0.2687 0.2789 0.2882 0.2966 0.3041 0.3105 0.3160 0.3206 0.3241 
3 0.0913 0.1011 0.1111 0.1214 0.1318 0.1424 0.1531 0.1639 0.1746 0.1852 
4 0.0182 0.0214 0.0249 0.0287 0.0330 0.0375 0.0425 0.0478 0.0535 0.0595 
5 0.0019 0.0024 0.0030 0.0036 0.0044 0.0053 0.0063 0.0074 0.0087 0.0102 
6 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 

 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.1079 0.0989 0.0905 0.0827 0.0754 0.0687 0.0625 0.0568 0.0515 0.0467 
1 0.2909 0.2792 0.2673 0.2555 0.2437 0.2319 0.2203 0.2089 0.1976 0.1866 
2 0.3267 0.3284 0.3292 0.3290 0.3280 0.3261 0.3235 0.3201 0.3159 0.3110 
3 0.1957 0.2061 0.2162 0.2260 0.2355 0.2446 0.2533 0.2616 0.2693 0.2765 
4 0.0660 0.0727 0.0799 0.0873 0.0951 0.1032 0.1116 0.1202 0.1291 0.1382 
5 0.0119 0.0137 0.0157 0.0180 0.0205 0.0232 0.0262 0.0295 0.0330 0.0369 
6 0.0009 0.0011 0.0013 0.0015 0.0018 0.0022 0.0026 0.0030 0.0035 0.0041 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.0422 0.0381 0.0343 0.0308 0.0277 0.0248 0.0222 0.0198 0.0176 0.0156 
1 0.1759 0.1654 0.1552 0.1454 0.1359 0.1267 0.1179 0.1095 0.1014 0.0938 
2 0.3055 0.2994 0.2928 0.2856 0.2780 0.2699 0.2615 0.2527 0.2436 0.2344 
3 0.2831 0.2891 0.2945 0.2992 0.3032 0.3065 0.3091 0.3110 0.3121 0.3125 
4 0.1475 0.1570 0.1666 0.1763 0.1861 0.1958 0.2056 0.2153 0.2249 0.2344 
5 0.0410 0.0455 0.0503 0.0554 0.0609 0.0667 0.0729 0.0795 0.0864 0.0938 
6 0.0048 0.0055 0.0063 0.0073 0.0083 0.0095 0.0108 0.0122 0.0138 0.0156 

n = 7 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.9321 0.8681 0.8080 0.7514 0.6983 0.6485 0.6017 0.5578 0.5168 0.4783 
1 0.0659 0.1240 0.1749 0.2192 0.2573 0.2897 0.3170 0.3396 0.3578 0.3720 
2 0.0020 0.0076 0.0162 0.0274 0.0406 0.0555 0.0716 0.0886 0.1061 0.1240 
3 0.0000 0.0003 0.0008 0.0019 0.0036 0.0059 0.0090 0.0128 0.0175 0.0230 
4 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0007 0.0011 0.0017 0.0026 
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 
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 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.4423 0.4087 0.3773 0.3479 0.3206 0.2951 0.2714 0.2493 0.2288 0.2097 
1 0.3827 0.3901 0.3946 0.3965 0.3960 0.3935 0.3891 0.3830 0.3756 0.3670 
2 0.1419 0.1596 0.1769 0.1936 0.2097 0.2248 0.2391 0.2523 0.2643 0.2753 
3 0.0292 0.0363 0.0441 0.0525 0.0617 0.0714 0.0816 0.0923 0.1033 0.1147 
4 0.0036 0.0049 0.0066 0.0086 0.0109 0.0136 0.0167 0.0203 0.0242 0.0287 
5 0.0003 0.0004 0.0006 0.0008 0.0012 0.0016 0.0021 0.0027 0.0034 0.0043 
6 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0003 0.0004 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.1920 0.1757 0.1605 0.1465 0.1335 0.1215 0.1105 0.1003 0.0910 0.0824 
1 0.3573 0.3468 0.3356 0.3237 0.3115 0.2989 0.2860 0.2731 0.2600 0.2471 
2 0.2850 0.2935 0.3007 0.3067 0.3115 0.3150 0.3174 0.3186 0.3186 0.3177 
3 0.1263 0.1379 0.1497 0.1614 0.1730 0.1845 0.1956 0.2065 0.2169 0.2269 
4 0.0336 0.0389 0.0447 0.0510 0.0577 0.0648 0.0724 0.0803 0.0886 0.0972 
5 0.0054 0.0066 0.0080 0.0097 0.0115 0.0137 0.0161 0.0187 0.0217 0.0250 
6 0.0005 0.0006 0.0008 0.0010 0.0013 0.0016 0.0020 0.0024 0.0030 0.0036 
7 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 

 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.0745 0.0672 0.0606 0.0546 0.0490 0.0440 0.0394 0.0352 0.0314 0.0280 
1 0.2342 0.2215 0.2090 0.1967 0.1848 0.1732 0.1619 0.1511 0.1407 0.1306 
2 0.3156 0.3127 0.3088 0.3040 0.2985 0.2922 0.2853 0.2778 0.2698 0.2613 
3 0.2363 0.2452 0.2535 0.2610 0.2679 0.2740 0.2793 0.2838 0.2875 0.2903 
4 0.1062 0.1154 0.1248 0.1345 0.1442 0.1541 0.1640 0.1739 0.1838 0.1935 
5 0.0286 0.0326 0.0369 0.0416 0.0466 0.0520 0.0578 0.0640 0.0705 0.0774 
6 0.0043 0.0051 0.0061 0.0071 0.0084 0.0098 0.0113 0.0131 0.0150 0.0172 
7 0.0003 0.0003 0.0004 0.0005 0.0006 0.0008 0.0009 0.0011 0.0014 0.0016 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.0249 0.0221 0.0195 0.0173 0.0152 0.0134 0.0117 0.0103 0.0090 0.0078 
1 0.1211 0.1119 0.1032 0.0950 0.0872 0.0798 0.0729 0.0664 0.0604 0.0547 
2 0.2524 0.2431 0.2336 0.2239 0.2140 0.2040 0.1940 0.1840 0.1740 0.1641 
3 0.2923 0.2934 0.2937 0.2932 0.2918 0.2897 0.2867 0.2830 0.2786 0.2734 
4 0.2031 0.2125 0.2216 0.2304 0.2388 0.2468 0.2543 0.2612 0.2676 0.2734 
5 0.0847 0.0923 0.1003 0.1086 0.1172 0.1261 0.1353 0.1447 0.1543 0.1641 
6 0.0196 0.0223 0.0252 0.0284 0.0320 0.0358 0.0400 0.0445 0.0494 0.0547 
7 0.0019 0.0023 0.0027 0.0032 0.0037 0.0044 0.0051 0.0059 0.0068 0.0078 

n = 8 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.9227 0.8508 0.7837 0.7214 0.6634 0.6096 0.5596 0.5132 0.4703 0.4305 
1 0.0746 0.1389 0.1939 0.2405 0.2793 0.3113 0.3370 0.3570 0.3721 0.3826 
2 0.0026 0.0099 0.0210 0.0351 0.0515 0.0695 0.0888 0.1087 0.1288 0.1488 
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3 0.0001 0.0004 0.0013 0.0029 0.0054 0.0089 0.0134 0.0189 0.0255 0.0331 
4 0.0000 0.0000 0.0001 0.0002 0.0004 0.0007 0.0013 0.0021 0.0031 0.0046 
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0004 

 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.3937 0.3596 0.3282 0.2992 0.2725 0.2479 0.2252 0.2044 0.1853 0.1678 
1 0.3892 0.3923 0.3923 0.3897 0.3847 0.3777 0.3691 0.3590 0.3477 0.3355 
2 0.1684 0.1872 0.2052 0.2220 0.2376 0.2518 0.2646 0.2758 0.2855 0.2936 
3 0.0416 0.0511 0.0613 0.0723 0.0839 0.0959 0.1084 0.1211 0.1339 0.1468 
4 0.0064 0.0087 0.0115 0.0147 0.0185 0.0228 0.0277 0.0332 0.0393 0.0459 
5 0.0006 0.0009 0.0014 0.0019 0.0026 0.0035 0.0045 0.0058 0.0074 0.0092 
6 0.0000 0.0001 0.0001 0.0002 0.0002 0.0003 0.0005 0.0006 0.0009 0.0011 
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.1517 0.1370 0.1236 0.1113 0.1001 0.0899 0.0806 0.0722 0.0646 0.0576 
1 0.3226 0.3092 0.2953 0.2812 0.2670 0.2527 0.2386 0.2247 0.2110 0.1977 
2 0.3002 0.3052 0.3087 0.3108 0.3115 0.3108 0.3089 0.3058 0.3017 0.2965 
3 0.1596 0.1722 0.1844 0.1963 0.2076 0.2184 0.2285 0.2379 0.2464 0.2541 
4 0.0530 0.0607 0.0689 0.0775 0.0865 0.0959 0.1056 0.1156 0.1258 0.1361 
5 0.0113 0.0137 0.0165 0.0196 0.0231 0.0270 0.0313 0.0360 0.0411 0.0467 
6 0.0015 0.0019 0.0025 0.0031 0.0038 0.0047 0.0058 0.0070 0.0084 0.0100 
7 0.0001 0.0002 0.0002 0.0003 0.0004 0.0005 0.0006 0.0008 0.0010 0.0012 
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 

 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.0514 0.0457 0.0406 0.0360 0.0319 0.0281 0.0248 0.0218 0.0192 0.0168 
1 0.1847 0.1721 0.1600 0.1484 0.1373 0.1267 0.1166 0.1071 0.0981 0.0896 
2 0.2904 0.2835 0.2758 0.2675 0.2587 0.2494 0.2397 0.2297 0.2194 0.2090 
3 0.2609 0.2668 0.2717 0.2756 0.2786 0.2805 0.2815 0.2815 0.2806 0.2787 
4 0.1465 0.1569 0.1673 0.1775 0.1875 0.1973 0.2067 0.2157 0.2242 0.2322 
5 0.0527 0.0591 0.0659 0.0732 0.0808 0.0888 0.0971 0.1058 0.1147 0.1239 
6 0.0118 0.0139 0.0162 0.0188 0.0217 0.0250 0.0285 0.0324 0.0367 0.0413 
7 0.0015 0.0019 0.0023 0.0028 0.0033 0.0040 0.0048 0.0057 0.0067 0.0079 
8 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0004 0.0005 0.0007 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.0147 0.0128 0.0111 0.0097 0.0084 0.0072 0.0062 0.0053 0.0046 0.0039 
1 0.0816 0.0742 0.0672 0.0608 0.0548 0.0493 0.0442 0.0395 0.0352 0.0312 
2 0.1985 0.1880 0.1776 0.1672 0.1569 0.1469 0.1371 0.1275 0.1183 0.1094 
3 0.2759 0.2723 0.2679 0.2627 0.2568 0.2503 0.2431 0.2355 0.2273 0.2188 
4 0.2397 0.2465 0.2526 0.2580 0.2627 0.2665 0.2695 0.2717 0.2730 0.2734 
5 0.1332 0.1428 0.1525 0.1622 0.1719 0.1816 0.1912 0.2006 0.2098 0.2188 
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6 0.0463 0.0517 0.0575 0.0637 0.0703 0.0774 0.0848 0.0926 0.1008 0.1094 
7 0.0092 0.0107 0.0124 0.0143 0.0164 0.0188 0.0215 0.0244 0.0277 0.0312 
8 0.0008 0.0010 0.0012 0.0014 0.0017 0.0020 0.0024 0.0028 0.0033 0.0039 

n = 9 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.9135 0.8337 0.7602 0.6925 0.6302 0.5730 0.5204 0.4722 0.4279 0.3874 
1 0.0830 0.1531 0.2116 0.2597 0.2985 0.3292 0.3525 0.3695 0.3809 0.3874 
2 0.0034 0.0125 0.0262 0.0433 0.0629 0.0840 0.1061 0.1285 0.1507 0.1722 
3 0.0001 0.0006 0.0019 0.0042 0.0077 0.0125 0.0186 0.0261 0.0348 0.0446 
4 0.0000 0.0000 0.0001 0.0003 0.0006 0.0012 0.0021 0.0034 0.0052 0.0074 
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0003 0.0005 0.0008 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.3504 0.3165 0.2855 0.2573 0.2316 0.2082 0.1869 0.1676 0.1501 0.1342 
1 0.3897 0.3884 0.3840 0.3770 0.3679 0.3569 0.3446 0.3312 0.3169 0.3020 
2 0.1927 0.2119 0.2295 0.2455 0.2597 0.2720 0.2823 0.2908 0.2973 0.3020 
3 0.0556 0.0674 0.0800 0.0933 0.1069 0.1209 0.1349 0.1489 0.1627 0.1762 
4 0.0103 0.0138 0.0179 0.0228 0.0283 0.0345 0.0415 0.0490 0.0573 0.0661 
5 0.0013 0.0019 0.0027 0.0037 0.0050 0.0066 0.0085 0.0108 0.0134 0.0165 
6 0.0001 0.0002 0.0003 0.0004 0.0006 0.0008 0.0012 0.0016 0.0021 0.0028 
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0003 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.1199 0.1069 0.0952 0.0846 0.0751 0.0665 0.0589 0.0520 0.0458 0.0404 
1 0.2867 0.2713 0.2558 0.2404 0.2253 0.2104 0.1960 0.1820 0.1685 0.1556 
2 0.3049 0.3061 0.3056 0.3037 0.3003 0.2957 0.2899 0.2831 0.2754 0.2668 
3 0.1891 0.2014 0.2130 0.2238 0.2336 0.2424 0.2502 0.2569 0.2624 0.2668 
4 0.0754 0.0852 0.0954 0.1060 0.1168 0.1278 0.1388 0.1499 0.1608 0.1715 
5 0.0200 0.0240 0.0285 0.0335 0.0389 0.0449 0.0513 0.0583 0.0657 0.0735 
6 0.0036 0.0045 0.0057 0.0070 0.0087 0.0105 0.0127 0.0151 0.0179 0.0210 
7 0.0004 0.0005 0.0007 0.0010 0.0012 0.0016 0.0020 0.0025 0.0031 0.0039 
8 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 

 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.0355 0.0311 0.0272 0.0238 0.0207 0.0180 0.0156 0.0135 0.0117 0.0101 
1 0.1433 0.1317 0.1206 0.1102 0.1004 0.0912 0.0826 0.0747 0.0673 0.0605 
2 0.2576 0.2478 0.2376 0.2270 0.2162 0.2052 0.1941 0.1831 0.1721 0.1612 
3 0.2701 0.2721 0.2731 0.2729 0.2716 0.2693 0.2660 0.2618 0.2567 0.2508 
4 0.1820 0.1921 0.2017 0.2109 0.2194 0.2272 0.2344 0.2407 0.2462 0.2508 
5 0.0818 0.0904 0.0994 0.1086 0.1181 0.1278 0.1376 0.1475 0.1574 0.1672 
6 0.0245 0.0284 0.0326 0.0373 0.0424 0.0479 0.0539 0.0603 0.0671 0.0743 
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7 0.0047 0.0057 0.0069 0.0082 0.0098 0.0116 0.0136 0.0158 0.0184 0.0212 
8 0.0005 0.0007 0.0008 0.0011 0.0013 0.0016 0.0020 0.0024 0.0029 0.0035 
9 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.0087 0.0074 0.0064 0.0054 0.0046 0.0039 0.0033 0.0028 0.0023 0.0020 
1 0.0542 0.0484 0.0431 0.0383 0.0339 0.0299 0.0263 0.0231 0.0202 0.0176 
2 0.1506 0.1402 0.1301 0.1204 0.1110 0.1020 0.0934 0.0853 0.0776 0.0703 
3 0.2442 0.2369 0.2291 0.2207 0.2119 0.2027 0.1933 0.1837 0.1739 0.1641 
4 0.2545 0.2573 0.2592 0.2601 0.2600 0.2590 0.2571 0.2543 0.2506 0.2461 
5 0.1769 0.1863 0.1955 0.2044 0.2128 0.2207 0.2280 0.2347 0.2408 0.2461 
6 0.0819 0.0900 0.0983 0.1070 0.1160 0.1253 0.1348 0.1445 0.1542 0.1641 
7 0.0244 0.0279 0.0318 0.0360 0.0407 0.0458 0.0512 0.0571 0.0635 0.0703 
8 0.0042 0.0051 0.0060 0.0071 0.0083 0.0097 0.0114 0.0132 0.0153 0.0176 
9 0.0003 0.0004 0.0005 0.0006 0.0008 0.0009 0.0011 0.0014 0.0016 0.0020 

n = 10 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.9044 0.8171 0.7374 0.6648 0.5987 0.5386 0.4840 0.4344 0.3894 0.3487 
1 0.0914 0.1667 0.2281 0.2770 0.3151 0.3438 0.3643 0.3777 0.3851 0.3874 
2 0.0042 0.0153 0.0317 0.0519 0.0746 0.0988 0.1234 0.1478 0.1714 0.1937 
3 0.0001 0.0008 0.0026 0.0058 0.0105 0.0168 0.0248 0.0343 0.0452 0.0574 
4 0.0000 0.0000 0.0001 0.0004 0.0010 0.0019 0.0033 0.0052 0.0078 0.0112 
5 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0005 0.0009 0.0015 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 

 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.3118 0.2785 0.2484 0.2213 0.1969 0.1749 0.1552 0.1374 0.1216 0.1074 
1 0.3854 0.3798 0.3712 0.3603 0.3474 0.3331 0.3178 0.3017 0.2852 0.2684 
2 0.2143 0.2330 0.2496 0.2639 0.2759 0.2856 0.2929 0.2980 0.3010 0.3020 
3 0.0706 0.0847 0.0995 0.1146 0.1298 0.1450 0.1600 0.1745 0.1883 0.2013 
4 0.0153 0.0202 0.0260 0.0326 0.0401 0.0483 0.0573 0.0670 0.0773 0.0881 
5 0.0023 0.0033 0.0047 0.0064 0.0085 0.0111 0.0141 0.0177 0.0218 0.0264 
6 0.0002 0.0004 0.0006 0.0009 0.0012 0.0018 0.0024 0.0032 0.0043 0.0055 
7 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0004 0.0006 0.0008 
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.0947 0.0834 0.0733 0.0643 0.0563 0.0492 0.0430 0.0374 0.0326 0.0282 
1 0.2517 0.2351 0.2188 0.2030 0.1877 0.1730 0.1590 0.1456 0.1330 0.1211 
2 0.3011 0.2984 0.2942 0.2885 0.2816 0.2735 0.2646 0.2548 0.2444 0.2335 
3 0.2134 0.2244 0.2343 0.2429 0.2503 0.2563 0.2609 0.2642 0.2662 0.2668 
4 0.0993 0.1108 0.1225 0.1343 0.1460 0.1576 0.1689 0.1798 0.1903 0.2001 
5 0.0317 0.0375 0.0439 0.0509 0.0584 0.0664 0.0750 0.0839 0.0933 0.1029 
6 0.0070 0.0088 0.0109 0.0134 0.0162 0.0195 0.0231 0.0272 0.0317 0.0368 
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7 0.0011 0.0014 0.0019 0.0024 0.0031 0.0039 0.0049 0.0060 0.0074 0.0090 
8 0.0001 0.0002 0.0002 0.0003 0.0004 0.0005 0.0007 0.0009 0.0011 0.0014 
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 

 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.0245 0.0211 0.0182 0.0157 0.0135 0.0115 0.0098 0.0084 0.0071 0.0060 
1 0.1099 0.0995 0.0898 0.0808 0.0725 0.0649 0.0578 0.0514 0.0456 0.0403 
2 0.2222 0.2107 0.1990 0.0873 0.1757 0.1642 0.1529 0.1419 0.1312 0.1209 
3 0.2662 0.2644 0.2614 0.2573 0.2522 0.2462 0.2394 0.2319 0.2237 0.2150 
4 0.2093 0.2177 0.2253 0.2320 0.2377 0.2424 0.2461 0.2487 0.2503 0.2508 
5 0.1128 0.1229 0.1332 0.1434 0.1536 0.1636 0.1734 0.1829 0.1920 0.2007 
6 0.0422 0.0482 0.0547 0.0616 0.0689 0.0767 0.0849 0.0934 0.1023 0.1115 
7 0.0108 0.0130 0.0154 0.0181 0.0212 0.0247 0.0285 0.0327 0.0374 0.0425 
8 0.0018 0.0023 0.0028 0.0035 0.0043 0.0052 0.0063 0.0075 0.0090 0.0106 
9 0.0002 0.0002 0.0003 0.0004 0.0005 0.0006 0.0008 0.0010 0.0013 0.0016 

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.0051 0.0043 0.0036 0.0030 0.0025 0.0021 0.0017 0.0014 0.0012 0.0010 
1 0.0355 0.0312 0.0273 0.0238 0.0207 0.0180 0.0155 0.0133 0.0114 0.0098 
2 0.1111 0.1017 0.0927 0.0843 0.0763 0.0688 0.0619 0.0554 0.0494 0.0439 
3 0.2058 0.1963 0.1865 0.1765 0.1665 0.1564 0.1464 0.1364 0.1267 0.1172 
4 0.2503 0.2488 0.2462 0.2427 0.2384 0.2331 0.2271 0.2204 0.2130 0.2051 
5 0.2087 0.2162 0.2229 0.2289 0.2340 0.2383 0.2417 0.2441 0.2456 0.2461 
6 0.1209 0.1304 0.1401 0.1499 0.1596 0.1692 0.1786 0.1878 0.1966 0.2051 
7 0.0480 0.0540 0.0604 0.0673 0.0746 0.0824 0.0905 0.0991 0.1080 0.1172 
8 0.0125 0.0147 0.0171 0.0198 0.0229 0.0263 0.0301 0.0343 0.0389 0.0439 
9 0.0019 0.0024 0.0029 0.0035 0.0042 0.0050 0.0059 0.0070 0.0083 0.0098 

10 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004 0.0005 0.0006 0.0008 0.0010 
n = 11 

   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.8953 0.8007 0.7153 0.6382 0.5688 0.5063 0.4501 0.3996 0.3544 0.3138 
1 0.0995 0.1798 0.2433 0.2925 0.3293 0.3555 0.3727 0.3823 0.3855 0.3835 
2 0.0050 0.0183 0.0376 0.0609 0.0867 0.1135 0.1403 0.1662 0.1906 0.2131 
3 0.0002 0.0011 0.0035 0.0076 0.0137 0.0217 0.0317 0.0434 0.0566 0.0710 
4 0.0000 0.0000 0.0002 0.0006 0.0014 0.0028 0.0048 0.0075 0.0112 0.0158 
5 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0005 0.0009 0.0015 0.0025 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0003 
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 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.2775 0.2451 0.2161 0.1903 0.1673 0.1469 0.1288 0.1127 0.9085 0.0859 
1 0.3773 0.3676 0.3552 0.3408 0.3248 0.3078 0.2901 0.2721 0.2541 0.2362 
2 0.2332 0.2507 0.2654 0.2774 0.2866 0.2932 0.2971 0.2987 0.2980 0.2953 
3 0.0865 0.1025 0.1190 0.1355 0.1517 0.1675 0.1826 0.1967 0.2097 0.2215 
4 0.0214 0.0280 0.0356 0.0441 0.0536 0.0638 0.0748 0.0864 0.0984 0.1107 
5 0.0037 0.0053 0.0074 0.0101 0.0132 0.0170 0.0214 0.0265 0.0323 0.0388 
6 0.0005 0.0007 0.0011 0.0016 0.0023 0.0032 0.0044 0.0058 0.0076 0.0097 
7 0.0000 0.0001 0.0001 0.0002 0.0003 0.0004 0.0006 0.0009 0.0013 0.0017 
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.0748 0.0650 0.0564 0.0489 0.0422 0.0364 0.0314 0.0270 0.0231 0.0198 
1 0.2187 0.2017 0.1854 0.1697 0.1549 0.1408 0.1276 0.1153 0.1038 0.0932 
2 0.2907 0.2845 0.2768 0.2680 0.2581 0.2474 0.2360 0.2242 0.2121 0.1998 
3 0.2318 0.2407 0.2481 0.2539 0.2581 0.2608 0.2619 0.2616 0.2599 0.2568 
4 0.1232 0.1358 0.1482 0.1603 0.1721 0.1832 0.1937 0.2035 0.2123 0.2201 
5 0.0459 0.0536 0.0620 0.0709 0.0803 0.0901 0.1003 0.1108 0.1214 0.1321 
6 0.0122 0.0151 0.0185 0.0224 0.0268 0.0317 0.0371 0.0431 0.0496 0.0566 
7 0.0023 0.0030 0.0039 0.0050 0.0064 0.0079 0.0098 0.0120 0.0145 0.0173 
8 0.0003 0.0004 0.0006 0.0008 0.0011 0.0014 0.0018 0.0023 0.0030 0.0037 
9 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0005 

 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.0169 0.0144 0.0122 0.0104 0.0088 0.0074 0.0062 0.0052 0.0044 0.0036 
1 0.0834 0.0744 0.0662 0.0587 0.0518 0.0457 0.0401 0.0351 0.0306 0.0266 
2 0.1874 0.1751 0.1630 0.1511 0.1395 0.1284 0.1177 0.1075 0.0978 0.0887 
3 0.2526 0.2472 0.2408 0.2335 0.2254 0.2167 0.2074 0.1977 0.1876 0.1774 
4 0.2269 0.2326 0.2372 0.2406 0.2428 0.2438 0.2436 0.2423 0.2399 0.2365 
5 0.1427 0.1533 0.1636 0.1735 0.1830 0.1920 0.2003 0.2079 0.2148 0.2207 
6 0.0641 0.0721 0.0806 0.0894 0.0985 0.1080 0.1176 0.1274 0.1373 0.1471 
7 0.0206 0.0242 0.0283 0.0329 0.0379 0.0434 0.0494 0.0558 0.0627 0.0701 
8 0.0046 0.0057 0.0070 0.0085 0.0102 0.0122 0.0145 0.0171 0.0200 0.0234 
9 0.0007 0.0009 0.0011 0.0015 0.0018 0.0023 0.0028 0.0035 0.0043 0.0052 

10 0.0001 0.0001 0.0001 0.0001 0.0002 0.0003 0.0003 0.0004 0.0005 0.0007 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.0030 0.0025 0.0021 0.0017 0.0014 0.0011 0.0009 0.0008 0.0006 0.0005 
1 0.0231 0.0199 0.0171 0.0147 0.0125 0.0107 0.0090 0.0076 0.0064 0.0054 
2 0.0801 0.0721 0.0646 0.0577 0.0513 0.0454 0.0401 0.0352 0.0308 0.0269 
3 0.1670 0.1566 0.1462 0.1359 0.1259 0.1161 0.1067 0.0976 0.0888 0.0806 
4 0.2321 0.2267 0.2206 0.2136 0.2060 0.1978 0.1892 0.1801 0.1707 0.1611 
5 0.2258 0.2299 0.2329 0.2350 0.2360 0.2359 0.2348 0.2327 0.2296 0.2256 

(Continued)  

Appendix. Tables of Mathematical Values 188



Table A.7 Binomial probability distribution 

6 0.1569 0.1664 0.1757 0.1846 0.1931 0.2010 0.2083 0.2148 0.2206 0.2256 
7 0.0779 0.0861 0.0947 0.1036 0.1128 0.1223 0.1319 0.1416 0.1514 0.1611 
8 0.0271 0.0312 0.0357 0.0407 0.0462 0.0521 0.0585 0.0654 0.0727 0.0806 
9 0.0063 0.0075 0.0090 0.0107 0.0126 0.0148 0.0173 0.0201 0.0233 0.0269 

10 0.0009 0.0011 0.0014 0.0017 0.0021 0.0025 0.0031 0.0037 0.0045 0.0054 
11 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0003 0.0004 0.0005 

n = 12 
   p 
t   0.01 0.02 0.03  0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.8864 0.7847 0.6938 0.6127 0.5404 0.4759 0.4186 0.3677 0.3225 0.2824 
1 0.1074 0.1922 0.2575 0.3064 0.3413 0.3645 0.3781 0.3837 0.3827 0.3766 
2 0.0060 0.0216 0.0438 0.0702 0.0988 0.1280 0.1565 0.1835 0.2082 0.2301 
3 0.0002 0.0015 0.0045 0.0098 0.0173 0.0272 0.0393 0.0532 0.0686 0.0852 
4 0.0000 0.0001 0.0003 0.0009 0.0021 0.0039 0.0067 0.0104 0.0153 0.0213 
5 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0008 0.0014 0.0024 0.0038 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0005 

 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.2470 0.2157 0.1880 0.1637 0.1422 0.1234 0.1069 0.0924 0.0798 0.0687 
1 0.3663 0.3529 0.3372 0.3197 0.3012 0.2821 0.2627 0.2434 0.2245 0.2062 
2 0.2490 0.2647 0.2771 0.2863 0.2924 0.2955 0.2960 0.2939 0.2897 0.2835 
3 0.1026 0.1203 0.1380 0.1553 0.1720 0.1876 0.2021 0.2151 0.2265 0.2362 
4 0.0285 0.0369 0.0464 0.0569 0.0683 0.0804 0.0931 0.1062 0.1195 0.1329 
5 0.0056 0.0081 0.0111 0.0148 0.0193 0.0245 0.0305 0.0373 0.0449 0.0532 
6 0.0008 0.0013 0.0019 0.0028 0.0040 0.0054 0.0073 0.0096 0.0123 0.01505 
7 0.0001 0.0001 0.0002 0.0004 0.0006 0.0009 0.0013 0.0018 0.0025 0.0033 
8 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0004 0.0005 
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.0591 0.0507 0.0434 0.0371 0.0317 0.0270 0.0229 0.0194 0.0164 0.0138 
1 0.1885 0.1717 0.1557 0.1407 0.1267 0.1137 0.1016 0.0906 0.0804 0.0712 
2 0.2756 0.2663 0.2558 0.2444 0.2323 0.2197 0.2068 0.1937 0.1807 0.1678 
3 0.2442 0.2503 0.2547 0.2573 0.2581 0.2573 0.2549 0.2511 0.2460 0.2397 
4 0.1460 0.1589 0.1712 0.1828 0.1936 0.2034 0.2122 0.2197 0.2261 0.2311 
5 0.0621 0.0717 0.0818 0.0924 0.1032 0.1143 0.1255 0.1367 0.1477 0.1585 
6 0.0193 0.0236 0.0285 0.0340 0.0401 0.0469 0.0542 0.0620 0.0704 0.0792 
7 0.0044 0.0057 0.0073 0.0092 0.0115 0.0141 0.0172 0.0207 0.0246 0.0291 
8 0.0007 0.0010 0.0014 0.0018 0.0024 0.0031 0.0040 0.0050 0.0063 0.0078 
9 0.0001 0.0001 0.0002 0.0003 0.0004 0.0005 0.0007 0.0009 0.0011 0.0015 

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 
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 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.0016 0.0098 0.0082 0.0068 0.0057 0.0047 0.0039 0.0032 0.0027 0.0022 
1 0.0628 0.0552 0.0484 0.0422 0.0368 0.0319 0.0276 0.0237 0.0204 0.0174 
2 0.1552 0.1429 0.1310 0.1197 0.1088 0.0986 0.0890 0.0800 0.0716 0.0639 
3 0.2324 0.2241 0.2151 0.2055 0.1954 0.1849 0.1742 0.1634 0.1526 0.1419 
4 0.2349 0.2373 0.2384 0.2382 0.2367 0.2340 0.2302 0.2254 0.2195 0.2128 
5 0.1688 0.1787 0.1879 0.1963 0.2039 0.2106 0.2163 0.2210 0.2246 0.2270 
6 0.0885 0.0981 0.1079 0.1180 0.1281 0.1382 0.1482 0.1580 0.1675 0.1766 
7 0.0341 0.0396 0.0456 0.0521 0.0591 0.0666 0.0746 0.0830 0.0918 0.1009 
8 0.0096 0.0116 0.0140 0.0168 0.0199 0.0234 0.0274 0.0318 0.0367 0.0420 
9 0.0019 0.0024 0.0031 0.0038 0.0048 0.0059 0.0071 0.0087 0.0104 0.0125 

10 0.0003 0.0003 0.0005 0.0006 0.0008 0.0010 0.0013 0.0016 0.0020 0.0025 
11 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.0018 0.0014 0.0012 0.0010 0.0008 0.0006 0.0005 0.0004 0.0003 0.0002 
1 0.0148 0.0126 0.0106 0.0090 0.0075 0.0063 0.0052 0.0043 0.0036 0.0029 
2 0.0567 0.0502 0.0442 0.0388 0.0339 0.0294 0.0255 0.0220 0.0189 0.0161 
3 0.1314 0.1211 0.1111 0.1015 0.0923 0.0836 0.0754 0.0676 0.0604 0.0537 
4 0.2054 0.1973 0.1886 0.1794 0.1700 0.1602 0.1504 0.1405 0.1306 0.1208 
5 0.2284 0.2285 0.2276 0.2256 0.2225 0.2184 0.2134 0.2075 0.2008 0.1934 
6 0.1851 0.1931 0.2003 0.2068 0.2124 0.2171 0.2208 0.2234 0.2250 0.2256 
7 0.1103 0.1198 0.1295 0.1393 0.1498 0.1585 0.1678 0.1768 0.1853 0.1934 
8 0.0479 0.0542 0.0611 0.0684 0.0762 0.0844 0.0930 0.1020 0.1113 0.1208 
9 0.0148 0.0175 0.0205 0.0239 0.0277 0.0319 0.0367 0.0418 0.0475 0.0537 

10 0.0031 0.0038 0.0046 0.0056 0.0068 0.0082 0.0098 0.0116 0.0137 0.0161 
11 0.0004 0.0005 0.0006 0.0008 0.0010 0.0013 0.0016 0.0019 0.0024 0.0029 
12 0.0000 .0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 

n = 13 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.8775 0.7690 0.6730 0.5882 0.5133 0.4474 0.3893 0.3383 0.2935 0.2542 
1 0.1152 0.2040 0.2706 0.3186 0.3512 0.3712 0.3809 0.3824 0.3773 0.3672 
2 0.0070 0.0250 0.0502 0.0797 0.1109 0.1422 0.1720 0.1995 0.2239 0.2448 
3 0.0003 0.0019 0.0057 0.0122 0.0214 0.0333 0.0475 0.0636 0.0812 0.0997 
4 0.0000 0.0001 0.0004 0.0013 0.0028 0.0053 0.0089 0.0138 0.0201 0.0277 
5 0.0000 0.0000 0.0000 0.0001 0.0003 0.0006 0.0012 0.0022 0.0036 0.0055 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0005 0.0008 
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.2198 0.1898 0.1636 0.1408 0.1209 0.1037 0.0887 0.0758 0.0646 0.0550 
1 0.3532 0.3364 0.3178 0.2979 0.2774 0.2567 0.2362 0.2163 0.1970 0.1787 
2 0.2619 0.2753 0.2849 0.2910 0.2937 0.2934 0.2903 0.2848 0.2773 0.2680 
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3 0.1187 0.1376 0.1561 0.1737 0.1900 0.2049 0.2180 0.2293 0.2385 0.2457 
4 0.0367 0.0469 0.0583 0.0707 0.0838 0.0976 0.1116 0.1258 0.1399 0.1535 
5 0.0082 0.0115 0.0157 0.0207 0.0266 0.0335 0.0412 0.0497 0.0591 0.0691 
6 0.0013 0.0021 0.0031 0.0045 0.0063 0.0085 0.0112 0.0145 0.0185 0.0230 
7 0.0002 0.0003 0.0005 0.0007 0.0011 0.0016 0.0023 0.0032 0.0043 0.0058 
8 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0004 0.0005 0.0008 0.0011 
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.0467 0.0396 0.0334 0.0282 0.0238 0.0200 0.0167 0.0140 0.0117 0.0097 
1 0.1613 0.1450 0.1299 0.1159 0.1029 0.0911 0.0804 0.0706 0.0619 0.0540 
2 0.2573 0.2455 0.2328 0.2195 0.2059 0.1921 0.1784 0.1648 0.1516 0.1388 
3 0.2508 0.2539 0.2550 0.2542 0.2517 0.2475 0.2419 0.2351 0.2271 0.2181 
4 0.1667 0.1790 0.1904 0.2007 0.2097 0.2174 0.2237 0.2285 0.2319 0.2337 
5 0.0797 0.0909 0.1024 0.1141 0.1258 0.1375 0.1489 0.1600 0.1705 0.1803 
6 0.0283 0.0342 0.0408 0.0480 0.0559 0.0644 0.0734 0.0829 0.0928 0.1030 
7 0.0075 0.0096 0.0122 0.0152 0.0186 0.0226 0.0272 0.0323 0.0379 0.0442 
8 0.0015 0.0020 0.0027 0.0036 0.0047 0.0060 0.0075 0.0094 0.0116 0.0142 
9 0.0002 0.0003 0.0005 0.0006 0.0009 0.0012 0.0015 0.0020 0.0026 0.0034 

10 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0006 
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.0080 0.0066 0.0055 0.0045 0.0037 0.0030 0.0025 0.0020 0.0016 0.0013 
1 0.0469 0.0407 0.0351 0.0302 0.0259 0.0221 0.0188 0.0159 0.0135 0.0113 
2 0.1265 0.1148 0.1037 0.0933 0.0836 0.0746 0.0663 0.0586 0.0516 0.0453 
3 0.2084 0.1981 0.1874 0.1763 0.1651 0.1538 0.1427 0.1317 0.1210 0.1107 
4 0.2341 0.2331 0.2307 0.2270 0.2222 0.2163 0.2095 0.2018 0.1934 0.1845 
5 0.1893 0.1974 0.2045 0.2105 0.2154 0.2190 0.2215 0.2227 0.2226 0.2214 
6 0.1134 0.1239 0.1343 0.1446 0.1546 0.1643 0.1734 0.1820 0.1898 0.1968 
7 0.0509 0.0583 0.0662 0.0745 0.0833 0.0924 0.1019 0.1115 0.1213 0.1312 
8 0.0172 0.0206 0.0244 0.0288 0.0336 0.0390 0.0449 0.0513 0.0582 0.0656 
9 0.0043 0.0054 0.0067 0.0082 0.0101 0.0122 0.0146 0.0175 0.0207 0.0243 

10 0.0008 0.0010 0.0013 0.0017 0.0022 0.0027 0.0034 0.0043 0.0053 0.0065 
11 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0006 0.0007 0.0009 0.0012 
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.0010 0.0008 0.0007 0.0005 0.0004 0.0003 0.0003 0.0002 0.0002 0.0001 
1 0.0095 0.0079 0.0066 0.0054 0.0045 0.0037 0.0030 0.0024 0.0020 0.0016 
2 0.0395 0.0344 0.0298 0.0256 0.0220 0.0188 0.0160 0.0135 0.0114 0.0095 
3 0.1007 0.0913 0.0823 0.0739 0.0660 0.0587 0.0519 0.0457 0.0401 0.0349 
4 0.1750 0.1653 0.1553 0.1451 0.1350 0.1250 0.1151 0.1055 0.0962 0.0873 
5 0.2189 0.2154 0.2108 0.2053 0.1989 0.1917 0.1838 0.1753 0.1664 0.1571 
6 0.2029 0.2080 0.2121 0.2151 0.2169 0.2177 0.2173 0.2158 0.2131 0.2095 
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7 0.1410 0.1506 0.1600 0.1690 0.1775 0.1854 0.1927 0.1992 0.2048 0.2095 
8 0.0735 0.0818 0.0905 0.0996 0.1089 0.1185 0.1282 0.1379 0.1476 0.1571 
9 0.0284 0.0329 0.0379 0.0435 0.0495 0.0561 0.0631 0.0707 0.0788 0.0873 

10 0.0079 0.0095 0.0114 0.0137 0.0162 0.0191 0.0224 0.0261 0.0303 0.0349 
11 0.0015 0.0019 0.0024 0.0029 0.0036 0.0044 0.0054 0.0066 0.0079 0.0095 
12 0.0002 0.0002 0.0003 0.0004 0.0005 0.0006 0.0008 0.0010 0.0013 0.0016 
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 

n = 14 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.8687 0.7536 0.6528 0.5647 0.4877 0.4205 0.3620 0.3112 0.2670 0.2288 
1 0.1229 0.2153 0.2827 0.3294 0.3593 0.3758 0.3815 0.3788 0.3698 0.3559 
2 0.0081 0.0286 0.0568 0.0892 0.1229 0.1559 0.1867 0.2141 0.2377 0.2570 
3 0.0003 0.0023 0.0070 0.0149 0.0259 0.0398 0.0562 0.0745 0.0940 0.1142 
4 0.0000 0.0001 0.0006 0.0017 0.0037 0.0070 0.0116 0.0178 0.0256 0.0349 
5 0.0000 0.0000 0.0000 0.0001 0.0004 0.0009 0.0018 0.0031 0.0051 0.0078 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0008 0.0013 
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 

 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.1956 0.1670 0.1423 0.1211 0.1028 0.0871 0.0736 0.0621 0.0523 0.0440 
1 0.3385 0.3188 0.2977 0.2759 0.2539 0.2322 0.2112 0.1910 0.1719 0.1539 
2 0.2720 0.2826 0.2892 0.2919 0.2912 0.2875 0.2811 0.2725 0.2620 0.2501 
3 0.1345 0.1542 0.1728 0.1901 0.2056 0.2190 0.2303 0.2393 0.2459 0.2501 
4 0.0457 0.0578 0.0710 0.0851 0.0998 0.1147 0.1297 0.1444 0.1586 0.1720 
5 0.0113 0.0158 0.0212 0.0277 0.0352 0.0437 0.0531 0.0634 0.0744 0.0860 
6 0.0021 0.0032 0.0048 0.0068 0.0093 0.0125 0.0163 0.0209 0.0262 0.0322 
7 0.0003 0.0005 0.0008 0.0013 0.0019 0.0027 0.0038 0.0052 0.0070 0.0092 
8 0.0000 0.0001 0.0001 0.0002 0.0003 0.0005 0.0007 0.0010 0.0014 0.0020 
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0003 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.0369 0.0309 0.0258 0.0214 0.0178 0.0148 0.0122 0.0101 0.0083 0.0068 
1 0.1372 0.1218 0.1077 0.0948 0.0832 0.0726 0.0632 0.0548 0.0473 0.0407 
2 0.2371 0.2234 0.2091 0.1946 0.1802 0.1659 0.1519 0.1385 0.1256 0.1134 
3 0.2521 0.2520 0.2499 0.2459 0.2402 0.2331 0.2248 0.2154 0.2052 0.1943 
4 0.1843 0.1955 0.2052 0.2135 0.2202 0.2252 0.2286 0.2304 0.2305 0.2290 
5 0.0980 0.1103 0.1226 0.1348 0.1468 0.1583 0.1691 0.1792 0.1883 0.1963 
6 0.0391 0.0466 0.0549 0.0639 0.0734 0.0834 0.0938 0.1045 0.1153 0.1262 
7 0.0119 0.0150 0.0188 0.0231 0.0280 0.0335 0.0397 0.0464 0.0538 0.0618 
8 0.0028 0.0037 0.0049 0.0064 0.0082 0.0103 0.0128 0.0158 0.0192 0.0232 
9 0.0005 0.0007 0.0010 0.0013 0.0018 0.0024 0.0032 0.0041 0.0052 0.0066 

10 0.0001 0.0001 0.0001 0.0002 0.0003 0.0004 0.0006 0.0008 0.0011 0.0014 
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 
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 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.0055 0.0045 0.0037 0.0030 0.0024 0.0019 0.0016 0.0012 0.0010 0.0008 
1 0.0349 0.0298 0.0253 0.0215 0.0181 0.0152 0.0128 0.0106 0.0088 0.0073 
2 0.1018 0.0911 0.0811 0.0719 0.0634 0.0557 0.0487 0.0424 0.0367 0.0317 
3 0.1830 0.1715 0.1598 0.1481 0.1366 0.1253 0.1144 0.1039 0.0940 0.0845 
4 0.2261 0.2219 0.2164 0.2098 0.2022 0.1938 0.1848 0.1752 0.1652 0.1549 
5 0.2032 0.2088 0.2132 0.2161 0.2178 0.2181 0.2170 0.2147 0.2112 0.2066 
6 0.1369 0.1474 0.1575 0.1670 0.1759 0.1840 0.1912 0.1974 0.2026 0.2066 
7 0.0703 0.0793 0.0886 0.0983 0.1082 0.1183 0.1283 0.1383 0.1480 0.1574 
8 0.0276 0.0326 0.0382 0.0443 0.0510 0.0582 0.0659 0.0742 0.0828 0.0918 
9 0.0083 0.0102 0.0125 0.0152 0.0183 0.0218 0.0258 0.0303 0.0353 0.0408 

10 0.0019 0.0024 0.0031 0.0039 0.0049 0.0061 0.0076 0.0093 0.0113 0.0136 
11 0.0003 0.0004 0.0006 0.0007 0.0010 0.0013 0.0016 0.0021 0.0026 0.0033 
12 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0005 
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.0006 0.0005 0.0004 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 
1 0.0060 0.0049 0.0040 0.0033 0.0027 0.0021 0.0017 0.0014 0.0011 0.0009 
2 0.0272 0.0233 0.0198 0.0168 0.0141 0.0118 0.0099 0.0082 0.0068 0.0056 
3 0.0757 0.0674 0.0597 0.0527 0.0462 0.0403 0.0350 0.0303 0.0260 0.0222 
4 0.1446 0.1342 0.1239 0.1138 0.1040 0.0945 0.0854 0.0768 0.0687 0.0611 
5 0.2009 0.1943 0.1869 0.1788 0.1701 0.1610 0.1515 0.1418 0.1320 0.1222 
6 0.2094 0.2111 0.2115 0.2108 0.2088 0.2057 0.2015 0.1963 0.1902 0.1833 
7 0.1663 0.1747 0.1824 0.1892 0.1952 0.2003 0.2043 0.2071 0.2089 0.2095 
8 0.1011 0.1107 0.1204 0.1301 0.1398 0.1493 0.1585 0.1673 0.1756 0.1833 
9 0.0469 0.0534 0.0605 0.0682 0.0762 0.0848 0.0937 0.1030 0.1125 0.1222 

10 0.0163 0.0193 0.0228 0.0268 0.0312 0.0361 0.0415 0.0475 0.0540 0.0611 
11 0.0041 0.0051 0.0063 0.0076 0.0093 0.0112 0.0134 0.0160 0.0189 0.0222 
12 0.0007 0.0009 0.0012 0.0015 0.0019 0.0024 0.0030 0.0037 0.0045 0.0056 
13 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0005 0.0007 0.0009 
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

n = 15 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.8601 0.7386 0.6333 0.5421 0.4633 0.3953 0.3367 0.2863 0.2430 0.2059 
1 0.1303 0.2261 0.2938 0.3388 0.3658 0.3785 0.3801 0.3734 0.3605 0.3432 
2 0.0092 0.0323 0.0636 0.0988 0.1348 0.1691 0.2003 0.2273 0.2496 0.2669 
3 0.0004 0.0029 0.0085 0.0178 0.0307 0.0468 0.0653 0.0857 0.1070 0.1285 
4 0.0000 0.0002 0.0008 0.0022 0.0049 0.0090 0.0148 0.0223 0.0317 0.0428 
5 0.0000 0.0000 0.0001 0.0002 0.0006 0.0013 0.0024 0.0043 0.0069 0.0105 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0006 0.0011 0.0019 
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 
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 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.1741 0.1470 0.1238 0.1041 0.0874 0.0731 0.0611 0.0510 0.0424 0.0352 
1 0.3228 0.3006 0.2775 0.2542 0.2312 0.2090 0.1878 0.1678 0.1492 0.1319 
2 0.2793 0.2870 0.2903 0.2897 0.2856 0.2787 0.2692 0.2578 0.2449 0.2309 
3 0.1496 0.1696 0.1880 0.2044 0.2184 0.2300 0.2389 0.2452 0.2489 0.2501 
4 0.0555 0.0694 0.0843 0.0998 0.1156 0.1314 0.1468 0.1615 0.1752 0.1876 
5 0.0151 0.0208 0.0277 0.0357 0.0449 0.0551 0.0662 0.0780 0.0904 0.1032 
6 0.0031 0.0047 0.0069 0.0097 0.0132 0.0175 0.0226 0.0285 0.0353 0.0430 
7 0.0005 0.0008 0.0013 0.0020 0.0030 0.0043 0.0059 0.0081 0.0107 0.0138 
8 0.0001 0.0001 0.0002 0.0003 0.0005 0.0008 0.0012 0.0018 0.0025 0.0035 
9 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0005 0.0007 

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.0291 0.0241 0.0198 0.0163 0.0134 0.0109 0.0089 0.0072 0.0059 0.0047 
1 0.1162 0.1018 0.0889 0.0772 0.0668 0.0576 0.0494 0.0423 0.0360 0.0305 
2 0.2162 0.2010 0.1858 0.1707 0.1559 0.1416 0.1280 0.1150 0.1029 0.0916 
3 0.2490 0.2457 0.2405 0.2336 0.2252 0.2156 0.2051 0.1939 0.1812 0.1700 
4 0.1986 0.2079 0.2155 0.2213 0.2252 0.2273 0.2276 0.2262 0.2231 0.2186 
5 0.1161 0.1290 0.1416 0.1537 0.1651 0.1757 0.1852 0.1935 0.2005 0.2061 
6 0.0514 0.0606 0.0705 0.0809 0.0917 0.1029 0.1142 0.1254 0.1365 0.1472 
7 0.0176 0.0220 0.0271 0.0329 0.0393 0.0465 0.0543 0.0627 0.0717 0.0811 
8 0.0047 0.0062 0.0081 0.0104 0.0131 0.0163 0.0201 0.0244 0.0293 0.0348 
9 0.0010 0.0014 0.0019 0.0025 0.0034 0.0045 0.0058 0.0074 0.0093 0.0116 

10 0.0002 0.0002 0.0003 0.0005 0.0007 0.0009 0.0013 0.0017 0.0023 0.0030 
11 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0006 
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 

 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.0038 0.0031 0.0025 0.0020 0.0016 0.0012 0.0010 0.0008 0.0006 0.0005 
1 0.0258 0.0217 0.0182 0.0152 0.0126 0.0104 0.0086 0.0071 0.0058 0.0047 
2 0.0811 0.0715 0.0627 0.0547 0.0476 0.0411 0.0354 0.0303 0.0259 0.0219 
3 0.1579 0.1457 0.1338 0.1222 0.1110 0.1002 0.0901 0.0805 0.0716 0.0634 
4 0.2128 0.2057 0.1977 0.1888 0.1792 0.1692 0.1587 0.1481 0.1374 0.1268 
5 0.0210 0.2130 0.2142 0.2140 0.2123 0.2093 0.2051 0.1997 0.1933 0.1859 
6 0.1575 0.1671 0.1759 0.1837 0.1906 0.1963 0.2008 0.2040 0.2059 0.2066 
7 0.0910 0.1011 0.1114 0.1217 0.1319 0.1419 0.1516 0.1608 0.1693 0.1771 
8 0.0409 0.0476 0.0549 0.0627 0.0710 0.0798 0.0890 0.0985 0.1082 0.1181 
9 0.0143 0.0174 0.0210 0.0251 0.0298 0.0349 0.0407 0.0470 0.0538 0.0612 

10 0.0038 0.0049 0.0062 0.0078 0.0096 0.0118 0.0143 0.0173 0.0206 0.0245 
11 0.0008 0.0011 0.0014 0.0018 0.0024 0.0030 0.0038 0.0048 0.0060 0.0074 
12 0.0001 0.0002 0.0002 0.0003 0.0004 0.0006 0.0007 0.0010 0.0013 0.0016 
13 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.0003 
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 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.0004 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 
1 0.0038 0.0031 0.0025 0.0020 0.0016 0.0012 0.0010 0.0008 0.0006 0.0005 
2 0.0185 0.0156 0.0130 0.0108 0.0090 0.0074 0.0060 0.0049 0.0040 0.0032 
3 0.0558 0.0489 0.0426 0.0369 0.0318 0.0272 0.0232 0.0197 0.0166 0.0139 
4 0.1163 0.1061 0.0963 0.0869 0.0780 0.0696 0.0617 0.0545 0.0478 0.0417 
5 0.1778 0.1691 0.1598 0.1502 0.1404 0.1304 0.1204 0.1106 0.1010 0.0916 
6 0.2060 0.2041 0.2010 0.1967 0.1914 0.1851 0.1780 0.1702 0.1617 0.1527 
7 0.1840 0.1900 0.1949 0.1987 0.2013 0.2028 0.2030 0.2020 0.1997 0.1964 
8 0.1279 0.1376 0.1470 0.1561 0.1647 0.1727 0.1800 0.1864 0.1919 0.1964 
9 0.0691 0.0775 0.0863 0.0954 0.1048 0.1144 0.1241 0.1338 0.1434 0.1527 

10 0.0288 0.0337 0.0390 0.0450 0.0515 0.0585 0.0661 0.0741 0.0827 0.0916 
11 0.0091 0.0111 0.0134 0.0161 0.0191 0.0226 0.0266 0.0311 0.0361 0.0417 
12 0.0021 0.0027 0.0034 0.0042 0.0052 0.0064 0.0079 0.0096 0.0116 0.0139 
13 0.0003 0.0004 0.0006 0.0008 0.0010 0.0013 0.0016 0.0020 0.0026 0.0032 
14 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0005 

n = 16 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.8515 0.7238 0.6143 0.5204 0.4401 0.3716 0.3131 0.2634 0.2211 0.1853 
1 0.1376 0.2363 0.3040 0.3469 0.3706 0.3795 0.3771 0.3665 0.3499 0.3294 
2 0.0104 0.0362 0.0705 0.1084 0.1463 0.1817 0.2129 0.2390 0.2596 0.2745 
3 0.0005 0.0034 0.0102 0.0211 0.0359 0.0541 0.0748 0.0970 0.1198 0.1423 
4 0.0000 0.0002 0.0010 0.0029 0.0061 0.0112 0.0183 0.0274 0.0385 0.0514 
5 0.0000 0.0000 0.0001 0.0003 0.0008 0.0017 0.0033 0.0057 0.0091 0.0137 
6 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0005 0.0009 0.0017 0.0028 
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.1550 0.1293 0.1077 0.0895 0.0743 0.0614 0.0507 0.0418 0.0343 0.0281 
1 0.3065 0.2822 0.2575 0.2332 0.2097 0.1873 0.1662 0.1468 0.1289 0.1126 
2 0.2841 0.2886 0.2886 0.2847 0.2775 0.2675 0.2554 0.2416 0.2267 0.2111 
3 0.1638 0.1837 0.2013 0.2163 0.2285 0.2378 0.2441 0.2475 0.2482 0.2463 
4 0.0658 0.0814 0.0977 0.1144 0.1311 0.1472 0.1625 0.1766 0.1892 0.2001 
5 0.0195 0.0266 0.0351 0.0447 0.0555 0.0673 0.0799 0.0930 0.1065 0.1201 
6 0.0044 0.0067 0.0096 0.0133 0.0180 0.0235 0.0300 0.0374 0.0458 0.0550 
7 0.0008 0.0013 0.0020 0.0031 0.0045 0.0064 0.0088 0.0117 0.0153 0.0197 
8 0.0001 0.0002 0.0003 0.0006 0.0009 0.0014 0.0020 0.0029 0.0041 0.0055 
9 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0004 0.0006 0.0008 0.0012 

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 
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 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.0230 0.0188 0.0153 0.0124 0.0100 0.0081 0.0065 0.0052 0.0042 0.0033 
1 0.0979 0.0847 0.0730 0.0626 0.0535 0.0455 0.0385 0.0325 0.0273 0.0228 
2 0.1952 0.1792 0.1635 0.1482 0.1336 0.1198 0.1068 0.0947 0.0835 0.0732 
3 0.2421 0.2359 0.2279 0.2185 0.2079 0.1964 0.1843 0.1718 0.1591 0.1465 
4 0.2092 0.2162 0.2212 0.2242 0.2252 0.2243 0.2215 0.2171 0.2112 0.2040 
5 0.1334 0.1464 0.1586 0.1699 0.1802 0.1891 0.1966 0.2026 0.2071 0.2099 
6 0.0650 0.0757 0.0869 0.0984 0.1101 0.1218 0.1333 0.1445 0.1551 0.1649 
7 0.0247 0.0305 0.0371 0.0444 0.0524 0.0611 0.0704 0.0803 0.0905 0.1010 
8 0.0074 0.0097 0.0125 0.0158 0.0197 0.0242 0.0293 0.0351 0.0416 0.0487 
9 0.0017 0.0024 0.0033 0.0044 0.0058 0.0075 0.0096 0.0121 0.0151 0.0185 

10 0.0003 0.0005 0.0007 0.0010 0.0014 0.0019 0.0025 0.0033 0.0043 0.0056 
11 0.0000 0.0001 0.0001 0.0002 0.0002 0.0004 0.0005 0.0007 0.0010 0.0013 
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 

 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.0026 0.0021 0.0016 0.0013 0.0010 0.0008 0.0006 0.0005 0.0004 0.0003 
1 0.0190 0.0157 0.0130 0.0107 0.0087 0.0071 0.0058 0.0047 0.0038 0.0030 
2 0.0639 0.0555 0.0480 0.0413 0.0353 0.0301 0.0255 0.0215 0.0180 0.0150 
3 0.1341 0.1220 0.1103 0.0992 0.0888 0.0790 0.0699 0.0615 0.0538 0.0468 
4 0.1958 0.1865 0.1766 0.1662 0.1553 0.1444 0.1333 0.1224 0.1118 0.1014 
5 0.2111 0.2107 0.2088 0.2054 0.2008 0.1949 0.1879 0.1801 0.1715 0.1623 
6 0.1739 0.1818 0.1885 0.1940 0.1982 0.2010 0.2024 0.2024 0.2010 0.1983 
7 0.1116 0.1222 0.1326 0.1428 0.1524 0.1615 0.1698 0.1772 0.1836 0.1889 
8 0.0564 0.0647 0.0735 0.0827 0.0923 0.1022 0.1122 0.1222 0.1320 0.1417 
9 0.0225 0.0271 0.0322 0.0379 0.0442 0.1511 0.0586 0.0666 0.0750 0.0840 

10 0.0071 0.0089 0.0111 0.0137 0.0167 0.0201 0.0241 0.0286 0.0336 0.0392 
11 0.0017 0.0023 0.0030 0.0038 0.0049 0.0062 0.0077 0.0095 0.0117 0.0142 
12 0.0003 0.0004 0.0006 0.0008 0.0011 0.0014 0.0019 0.0024 0.0031 0.0040 
13 0.0000 0.0001 0.0001 0.0001 0.0002 0.0003 0.0003 0.0005 0.0006 0.0008 
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 
1 0.0024 0.0019 0.0015 0.0012 0.0009 0.0007 0.0005 0.0004 0.0003 0.0002 
2 0.0125 0.0103 0.0085 0.0069 0.0056 0.0046 0.0037 0.0029 0.0023 0.0018 
3 0.0405 0.0349 0.0299 0.0254 0.0215 0.0181 0.0151 0.0126 0.0104 0.0085 
4 0.0915 0.0821 0.0732 0.0649 0.0572 0.0501 0.0436 0.0378 0.0325 0.0278 
5 0.1526 0.1426 0.1325 0.1224 0.1123 0.1024 0.0929 0.0837 0.0749 0.0667 
6 0.1944 0.1894 0.1833 0.1762 0.1684 0.1600 0.1510 0.1416 0.1319 0.1222 
7 0.1930 0.1959 0.1975 0.1978 0.1969 0.1947 0.1912 0.1867 0.1811 0.1746 
8 0.1509 0.1596 0.1676 0.1749 0.1812 0.1865 0.1908 0.1939 0.1958 0.1964 
9 0.0932 0.1027 0.1124 0.1221 0.1318 0.1413 0.1504 0.1591 0.1672 0.1746 
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10 0.0453 0.0521 0.0594 0.0672 0.0755 0.0842 0.0934 0.1028 0.1124 0.1222 
11 0.0172 0.0206 0.0244 0.0288 0.0337 0.0391 0.0452 0.0518 0.0589 0.0667 
12 0.0050 0.0062 0.0077 0.0094 0.0115 0.0139 0.0167 0.0199 0.0236 0.0278 
13 0.0011 0.0014 0.0018 0.0023 0.0029 0.0036 0.0046 0.0057 0.0070 0.0085 
14 0.0002 0.0002 0.0003 0.0004 0.0005 0.0007 0.0009 0.0011 0.0014 0.0018 
15 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 

n = 17 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.8429 0.7093 0.5958 0.4996 0.4181 0.3493 0.2912 0.2423 0.2012 0.1668 
1 0.1447 0.2461 0.3133 0.3539 0.3741 0.3790 0.3726 0.3582 0.3383 0.3150 
2 0.0117 0.0402 0.0775 0.1180 0.1575 0.1935 0.2244 0.2492 0.2677 0.2800 
3 0.0006 0.0041 0.0120 0.0246 0.0415 0.0618 0.0844 0.1083 0.1324 0.1556 
4 0.0000 0.0003 0.0013 0.0036 0.0076 0.0138 0.0222 0.0330 0.0458 0.0605 
5 0.0000 0.0000 0.0001 0.0004 0.0010 0.0023 0.0044 0.0075 0.0118 0.0175 
6 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0007 0.0013 0.0023 0.0039 
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0007 
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.1379 0.1138 0.0937 0.0770 0.0631 0.0516 0.0421 0.0343 0.0278 0.0225 
1 0.2898 0.2638 0.2381 0.2131 0.1893 0.1671 0.1466 0.1279 0.1109 0.0957 
2 0.2865 0.2878 0.2846 0.2775 0.2673 0.2547 0.2402 0.2245 0.2081 0.1914 
3 0.1771 0.1963 0.2126 0.2259 0.2359 0.2425 0.2460 0.2464 0.2441 0.2393 
4 0.0766 0.0937 0.1112 0.1287 0.1457 0.1617 0.1764 0.1893 0.2004 0.2093 
5 0.0246 0.0332 0.0432 0.0545 0.0668 0.0801 0.0939 0.1081 0.1222 0.1361 
6 0.0061 0.0091 0.0129 0.0177 0.0236 0.0305 0.0385 0.0474 0.0573 0.0680 
7 0.0012 0.0019 0.0030 0.0045 0.0065 0.0091 0.0124 0.0164 0.0211 0.0267 
8 0.0002 0.0003 0.0006 0.0009 0.0014 0.0022 0.0032 0.0045 0.0062 0.0084 
9 0.0000 0.0000 0.0001 0.0002 0.0003 0.0004 0.0006 0.0010 0.0015 0.0021 

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0004 
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.0182 0.0146 0.0118 0.0094 0.0075 0.0060 0.0047 0.0038 0.0030 0.0023 
1 0.0822 0.0702 0.0597 0.0505 0.0426 0.0357 0.0299 0.0248 0.0206 0.0169 
2 0.1747 0.1584 0.1427 0.1277 0.1136 0.1005 0.0883 0.0772 0.0672 0.0581 
3 0.2322 0.2234 0.2131 0.2016 0.1893 0.1765 0.1634 0.1502 0.1372 0.1245 
4 0.2161 0.2205 0.2228 0.2228 0.2209 0.2170 0.2115 0.2044 0.1961 0.1868 
5 0.1493 0.1617 0.1730 0.1830 0.1914 0.1982 0.2033 0.2067 0.2083 0.2081 
6 0.0794 0.0912 0.1034 0.1156 0.1276 0.1393 0.1504 0.1608 0.1701 0.1784 
7 0.0332 0.0404 0.0485 0.0573 0.0668 0.0769 0.0874 0.0982 0.1092 0.1201 
8 0.0110 0.0143 0.0181 0.0226 0.0279 0.0338 0.0404 0.0478 0.0558 0.0644 
9 0.0029 0.0040 0.0054 0.0071 0.0093 0.0119 0.0150 0.0186 0.0228 0.0276 
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10 0.0006 0.0009 0.0013 0.0018 0.0025 0.0033 0.0044 0.0058 0.0074 0.0095 
11 0.0001 0.0002 0.0002 0.0004 0.0005 0.0007 0.0010 0.0014 0.0019 0.0026 
12 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0003 0.0004 0.0006 
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 

 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.0018 0.0014 0.0011 0.0009 0.0007 0.0005 0.0004 0.0003 0.0002 0.0002 
1 0.0139 0.0114 0.0093 0.0075 0.0060 0.0048 0.0039 0.0031 0.0024 0.0019 
2 0.0500 0.0428 0.0364 0.0309 0.0260 0.0218 0.0182 0.0151 0.0125 0.0102 
3 0.1123 0.1007 0.0898 0.0795 0.0701 0.0614 0.0534 0.0463 0.0398 0.0341 
4 0.1766 0.1659 0.1547 0.1434 0.1320 0.1208 0.1099 0.0993 0.0892 0.0796 
5 0.2063 0.2030 0.1982 0.1921 0.1849 0.1767 0.1677 0.1582 0.1482 0.1379 
6 0.1854 0.1910 0.1952 0.1979 0.1991 0.1988 0.1970 0.1939 0.1895 0.1839 
7 0.1309 0.1413 0.1511 0.1602 0.1685 0.1757 0.1818 0.1868 0.1904 0.1927 
8 0.0735 0.0831 0.0930 0.1032 0.1134 0.1235 0.1335 0.1431 0.1521 0.1606 
9 0.0330 0.0391 0.0458 0.0531 0.0611 0.0695 0.0784 0.0877 0.0973 0.1070 

10 0.0119 0.0147 0.0181 0.0219 0.0263 0.0313 0.0368 0.0430 0.0498 0.0571 
11 0.0034 0.0044 0.0057 0.0072 0.0090 0.0112 0.0138 0.0168 0.0202 0.0242 
12 0.0008 0.0010 0.0014 0.0018 0.0024 0.0031 0.0040 0.0051 0.0065 0.0081 
13 0.0001 0.0002 0.0003 0.0004 0.0005 0.0007 0.0009 0.0012 0.0016 0.0021 
14 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1 0.0015 0.0012 0.0009 0.0007 0.0005 0.0004 0.0003 0.0002 0.0002 0.0001 
2 0.0084 0.0068 0.0055 0.0044 0.0035 0.0028 0.0022 0.0017 0.0013 0.0010 
3 0.0290 0.0246 0.0207 0.0173 0.0144 0.0119 0.0097 0.0079 0.0064 0.0052 
4 0.0706 0.0622 0.0546 0.0475 0.0411 0.0354 0.0302 0.0257 0.0217 0.0182 
5 0.1276 0.1172 0.1070 0.0971 0.0875 0.0784 0.0697 0.0616 0.0541 0.0472 
6 0.1773 0.1697 0.1614 0.1525 0.1432 0.1335 0.1237 0.1138 0.1040 0.0944 
7 0.1936 0.1932 0.1914 0.1883 0.1841 0.1787 0.1723 0.1650 0.1570 0.1484 
8 0.1682 0.1748 0.1805 0.1850 0.1883 0.1903 0.1910 0.1904 0.1886 0.1855 
9 0.1169 0.1266 0.1361 0.1453 0.1540 0.1621 0.1694 0.1758 0.1812 0.1855 

10 0.0650 0.0733 0.0822 0.0914 0.1008 0.1105 0.1202 0.1298 0.1393 0.1484 
11 0.0287 0.0338 0.0394 0.0457 0.0525 0.0599 0.0678 0.0763 0.0851 0.0944 
12 0.0100 0.0122 0.0149 0.0179 0.0215 0.0255 0.0301 0.0352 0.0409 0.0472 
13 0.0027 0.0034 0.0043 0.0054 0.0068 0.0084 0.0103 0.0125 0.0151 0.0182 
14 0.0005 0.0007 0.0009 0.0012 0.0016 0.0020 0.0026 0.0033 0.0041 0.0052 
15 0.0001 0.0001 0.0001 0.0002 0.0003 0.0003 0.0005 0.0006 0.0008 0.0010 
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 
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n = 18 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.8345 0.6951 0.5780 0.4796 0.3972 0.3283 0.2708 0.2229 0.1831 0.1501 
1 0.1517 0.2554 0.3217 0.3597 0.3763 0.3772 0.3669 0.3489 0.3260 0.3002 
2 0.0130 0.0443 0.0846 0.1274 0.1683 0.2047 0.2348 0.2579 0.2741 0.2835 
3 0.0007 0.0048 0.0140 0.0283 0.0473 0.0697 0.0942 0.1196 0.1446 0.1680 
4 0.0000 0.0004 0.0016 0.0044 0.0093 0.0167 0.0266 0.0390 0.0536 0.0700 
5 0.0000 0.0000 0.0001 0.0005 0.0014 0.0030 0.0056 0.0095 0.0148 0.0218 
6 0.0000 0.0000 0.0000 0.0000 0.0002 0.0004 0.0009 0.0018 0.0032 0.0052 
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0005 0.0010 
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 

 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.1227 0.1002 0.0815 0.0662 0.0536 0.0434 0.0349 0.0281 0.0225 0.0180 
1 0.2731 0.2458 0.2193 0.1940 0.1704 0.1486 0.1288 0.1110 0.0951 0.0811 
2 0.2869 0.2850 0.2785 0.2685 0.2556 0.2407 0.2243 0.2071 0.1897 0.1723 
3 0.1891 0.2072 0.2220 0.2331 0.2406 0.2445 0.2450 0.2425 0.2373 0.2297 
4 0.0877 0.1060 0.1244 0.1423 0.1592 0.1746 0.1882 0.1996 0.2087 0.2153 
5 0.0303 0.0405 0.0520 0.0649 0.0787 0.0931 0.1079 0.1227 0.1371 0.1507 
6 0.0081 0.0120 0.0168 0.0229 0.0301 0.0384 0.0479 0.0584 0.0697 0.0816 
7 0.0017 0.0028 0.0043 0.0064 0.0091 0.0126 0.0168 0.0220 0.0280 0.0350 
8 0.0003 0.0005 0.0009 0.0014 0.0022 0.0033 0.0047 0.0066 0.0090 0.0120 
9 0.0000 0.0001 0.0001 0.0003 0.0004 0.0007 0.0011 0.0016 0.0024 0.0033 

10 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0005 0.0008 
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.0144 0.0114 0.0091 0.0072 0.0056 0.0044 0.0035 0.0027 0.0021 0.0016 
1 0.0687 0.0580 0.0487 0.0407 0.0338 0.0280 0.0231 0.0189 0.0155 0.0126 
2 0.1553 0.1390 0.1236 0.1092 0.0958 0.0836 0.0725 0.0626 0.0537 0.0458 
3 0.2202 0.2091 0.1969 0.1839 0.1704 0.1567 0.1431 0.1298 0.1169 0.1046 
4 0.2195 0.2212 0.2205 0.2177 0.2130 0.2065 0.1985 0.1892 0.1790 0.1681 
5 0.1634 0.1747 0.1845 0.1925 0.1988 0.2031 0.2055 0.2061 0.2048 0.2017 
6 0.0941 0.1067 0.1194 0.1317 0.1436 0.1546 0.1647 0.1736 0.1812 0.1873 
7 0.0429 0.0516 0.0611 0.0713 0.0820 0.0931 0.1044 0.1157 0.1269 0.1376 
8 0.0157 0.0200 0.0251 0.0310 0.0376 0.0450 0.0531 0.0619 0.0713 0.0811 
9 0.0046 0.0063 0.0083 0.0109 0.0139 0.0176 0.0218 0.0267 0.0323 0.0386 

10 0.0011 0.0016 0.0022 0.0031 0.0042 0.0056 0.0073 0.0094 0.0119 0.0149 
11 0.0002 0.0003 0.0005 0.0007 0.0010 0.0014 0.0020 0.0026 0.0035 0.0046 
12 0.0000 0.0001 0.0001 0.0001 0.0002 0.0003 0.0004 0.0006 0.0008 0.0012 
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 
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 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.0013 0.0010 0.0007 0.0006 0.0004 0.0003 0.0002 0.0002 0.0001 0.0001 
1 0.0102 0.0082 0.0066 0.0052 0.0042 0.0033 0.0026 0.0020 0.0016 0.0012 
2 0.0388 0.0327 0.0275 0.0229 0.0190 0.0157 0.0129 0.0105 0.0086 0.0069 
3 0.0930 0.0822 0.0722 0.0630 0.0547 0.0471 0.0404 0.0344 0.0292 0.0246 
4 0.1567 0.1450 0.1333 0.1217 0.1104 0.0994 0.0890 0.0791 0.0699 0.0614 
5 0.1971 0.1911 0.1838 0.1755 0.1664 0.1566 0.1463 0.1358 0.1252 0.1146 
6 0.1919 0.1948 0.1962 0.1959 0.1941 0.1908 0.1862 0.1803 0.1734 0.1655 
7 0.1478 0.1572 0.1656 0.1730 0.1792 0.1840 0.1875 0.1895 0.1900 0.1892 
8 0.0913 0.1017 0.1122 0.1226 0.1327 0.1423 0.1514 0.1597 0.1671 0.1734 
9 0.0456 0.0532 0.0614 0.0701 0.0794 0.0890 0.0988 0.1087 0.1187 0.1284 

10 0.0184 0.0225 0.0272 0.0325 0.0385 0.0450 0.0522 0.0600 0.0683 0.0771 
11 0.0060 0.0077 0.0097 0.0122 0.0151 0.0184 0.0223 0.0267 0.0318 0.0374 
12 0.0016 0.0021 0.0028 0.0037 0.0047 0.0060 0.0076 0.0096 0.0118 0.0145 
13 0.0003 0.0005 0.0006 0.0009 0.0012 0.0016 0.0021 0.0027 0.0035 0.0045 
14 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0006 0.0008 0.0011 
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1 0.0009 0.0007 0.0005 0.0004 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 
2 0.0055 0.0044 0.0035 0.0028 0.0022 0.0017 0.0013 0.0010 0.0008 0.0006 
3 0.0206 0.0171 0.0141 0.0116 0.0095 0.0077 0.0062 0.0050 0.0039 0.0031 
4 0.0536 0.0464 0.0400 0.0342 0.0291 0.0246 0.0206 0.0172 0.0142 0.0117 
5 0.1042 0.0941 0.0844 0.0753 0.0666 0.0586 0.0512 0.0444 0.0382 0.0327 
6 0.1569 0.1477 0.1380 0.1281 0.1181 0.1081 0.0983 0.0887 0.0796 0.0708 
7 0.1869 0.1833 0.1785 0.1726 0.1657 0.1579 0.1494 0.1404 0.1310 0.1214 
8 0.1786 0.1825 0.1852 0.1864 0.1864 0.1850 0.1822 0.1782 0.1731 0.1669 
9 0.1379 0.1469 0.1552 0.1628 0.1694 0.1751 0.1795 0.1828 0.1848 0.1855 

10 0.0862 0.0957 0.1054 0.1151 0.1248 0.1342 0.1433 0.1519 0.1598 0.1669 
11 0.0436 0.0504 0.0578 0.0658 0.0742 0.0831 0.0924 0.1020 0.1117 0.1214 
12 0.0177 0.0213 0.0254 0.0301 0.0354 0.0413 0.0478 0.1549 0.0626 0.0708 
13 0.0057 0.0071 0.0089 0.0109 0.0134 0.0162 0.0196 0.0234 0.0278 0.0327 
14 0.0014 0.0018 0.0024 0.0031 0.0039 0.0049 0.0062 0.0077 0.0095 0.0117 
15 0.0003 0.0004 0.0005 0.0006 0.0009 0.0011 0.0015 0.0019 0.0024 0.0031 
16 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0006 
17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

n = 19 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.8262 0.6812 0.5606 0.4604 0.3774 0.3086 0.2519 0.2051 0.1666 0.1351 
1 0.1586 0.2642 0.3294 0.3645 0.3774 0.3743 0.3602 0.3389 0.3131 0.2852 
2 0.0144 0.0485 0.0917 0.1367 0.1787 0.2150 0.2440 0.2652 0.2787 0.2852 
3 0.0008 0.0056 0.0161 0.0323 0.0533 0.0778 0.1041 0.1307 0.1562 0.1796 
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4 0.0000 0.0005 0.0020 0.0054 0.0112 0.0199 0.0313 0.0455 0.0618 0.0798 
5 0.0000 0.0000 0.0002 0.0007 0.0018 0.0038 0.0071 0.0119 0.0183 0.0266 
6 0.0000 0.0000 0.0000 0.0001 0.0002 0.0006 0.0012 0.0024 0.0042 0.0069 
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0008 0.0014 
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 

 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.1092 0.0881 0.0709 0.0569 0.0456 0.0364 0.0290 0.0230 0.0182 0.0144 
1 0.2565 0.2284 0.2014 0.1761 0.1529 0.1318 0.1129 0.0961 0.0813 0.0685 
2 0.2854 0.2803 0.2708 0.2581 0.2428 0.2259 0.2081 0.1898 0.1717 0.1540 
3 0.1999 0.2166 0.2293 0.2381 0.2428 0.2439 0.2415 0.2361 0.2282 0.2182 
4 0.0988 0.1181 0.1371 0.1550 0.1714 0.1858 0.1979 0.2073 0.2141 0.2182 
5 0.0366 0.0483 0.0614 0.0757 0.0907 0.1062 0.1216 0.1365 0.1507 0.1636 
6 0.0106 0.0154 0.0214 0.0288 0.0374 0.0472 0.0581 0.0699 0.0825 0.0955 
7 0.0024 0.0039 0.0059 0.0087 0.0122 0.0167 0.0221 0.0285 0.0359 0.0443 
8 0.0004 0.0008 0.0013 0.0021 0.0032 0.0048 0.0068 0.0094 0.0126 0.0166 
9 0.0001 0.0001 0.0002 0.0004 0.0007 0.0011 0.0017 0.0025 0.0036 0.0051 

10 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0006 0.0009 0.0013 
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.0113 0.0089 0.0070 0.0054 0.0042 0.0033 0.0025 0.0019 0.0015 0.0011 
1 0.0573 0.0477 0.0396 0.0326 0.0268 0.0219 0.0178 0.0144 0.0116 0.0093 
2 0.1371 0.1212 0.1064 0.0927 0.0803 0.0692 0.0592 0.0503 0.0426 0.0358 
3 0.2065 0.1937 0.1800 0.1659 0.1517 0.1377 0.1240 0.1109 0.0985 0.0869 
4 0.2196 0.2185 0.2151 0.2096 0.2023 0.1935 0.1835 0.1726 0.1610 0.1491 
5 0.1751 0.1849 0.1928 0.1986 0.2023 0.2040 0.2036 0.2013 0.1973 0.1916 
6 0.1086 0.1217 0.1343 0.1463 0.1574 0.1672 0.1757 0.1827 0.1880 0.1916 
7 0.0536 0.0637 0.0745 0.0858 0.0974 0.1091 0.1207 0.1320 0.1426 0.1525 
8 0.0214 0.0270 0.0334 0.0406 0.0487 0.0575 0.0670 0.0770 0.0874 0.0981 
9 0.0069 0.0093 0.0122 0.0157 0.0198 0.0247 0.0303 0.0366 0.0436 0.0514 

10 0.0018 0.0026 0.0036 0.0050 0.0066 0.0087 0.0112 0.0142 0.0178 0.0220 
11 0.0004 0.0006 0.0009 0.0013 0.0018 0.0025 0.0034 0.0045 0.0060 0.0077 
12 0.0001 0.0001 0.0002 0.0003 0.0004 0.0006 0.0008 0.0012 0.0016 0.0022 
13 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0004 0.0005 
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 

 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.0009 0.0007 0.0005 0.0004 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 
1 0.0074 0.0059 0.0046 0.0036 0.0029 0.0022 0.0017 0.0013 0.0010 0.0008 
2 0.0299 0.0249 0.0206 0.0169 0.0138 0.0112 0.0091 0.0073 0.0058 0.0046 
3 0.0762 0.0664 0.0574 0.0494 0.0422 0.0358 0.0302 0.0253 0.0211 0.0175 
4 0.1370 0.1249 0.1131 0.1017 0.0909 0.0806 0.0710 0.0621 0.0540 0.0467 
5 0.1846 0.1764 0.1672 0.1572 0.1468 0.1360 0.1251 0.1143 0.1036 0.0933 
6 0.1935 0.1936 0.1921 0.1890 0.1844 0.1785 0.1714 0.1634 0.1546 0.1451 
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7 0.1615 0.1692 0.1757 0.1808 0.1844 0.1865 0.1870 0.1860 0.1835 0.1797 
8 0.1088 0.1195 0.1298 0.1397 0.1489 0.1573 0.1647 0.1710 0.1760 0.1797 
9 0.0597 0.0687 0.0782 0.0880 0.0980 0.1082 0.1182 0.1281 0.1375 0.1464 

10 0.0268 0.0323 0.0385 0.0453 0.0528 0.0608 0.0694 0.0785 0.0879 0.0976 
11 0.0099 0.0124 0.0155 0.0191 0.0233 0.0280 0.0334 0.0394 0.0460 0.0532 
12 0.0030 0.0039 0.0051 0.0066 0.0083 0.0105 0.0131 0.0161 0.0196 0.0237 
13 0.0007 0.0010 0.0014 0.0018 0.0024 0.0032 0.0041 0.0053 0.0067 0.0085 
14 0.0001 0.0002 0.0003 0.0004 0.0006 0.0008 0.0010 0.0014 0.0018 0.0024 
15 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0003 0.0004 0.0005 
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1 0.0006 0.0004 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0000 
2 0.0037 0.0029 0.0022 0.0017 0.0013 0.0010 0.0008 0.0006 0.0004 0.0003 
3 0.0144 0.0118 0.0096 0.0077 0.0062 0.0049 0.0039 0.0031 0.0024 0.0018 
4 0.0400 0.0341 0.0289 0.0243 0.0203 0.0168 0.0138 0.0113 0.0092 0.0074 
5 0.0834 0.0741 0.0653 0.0572 0.0497 0.0429 0.0368 0.0313 0.0265 0.0222 
6 0.1353 0.1252 0.1150 0.1049 0.0949 0.0853 0.0751 0.0674 0.0593 0.0518 
7 0.1746 0.1683 0.1611 0.1530 0.1443 0.1350 0.1254 0.1156 0.1058 0.0961 
8 0.1820 0.1829 0.1823 0.1803 0.1771 0.1725 0.1668 0.1601 0.1525 0.1442 
9 0.1546 0.1618 0.1681 0.1732 0.1771 0.1796 0.1808 0.1806 0.1791 0.1762 

10 0.1074 0.1172 0.1268 0.1361 0.1449 0.1530 0.1603 0.1667 0.1721 0.1762 
11 0.0611 0.0694 0.0783 0.0875 0.0970 0.1066 0.1163 0.1259 0.1352 0.1442 
12 0.0283 0.0335 0.0394 0.0458 0.0529 0.0606 0.0688 0.0775 0.0866 0.0961 
13 0.0106 0.0131 0.0160 0.0194 0.0233 0.0278 0.0328 0.0385 0.0448 0.0518 
14 0.0032 0.0041 0.0052 0.0065 0.0082 0.0101 0.0125 0.0152 0.0185 0.0222 
15 0.0007 0.0010 0.0013 0.0017 0.0022 0.0029 0.0037 0.0047 0.0059 0.0074 
16 0.0001 0.0002 0.0002 0.0003 0.0005 0.0006 0.0008 0.0011 0.0014 0.0018 
17 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 

n = 20 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.8179 0.6676 0.5438 0.4420 0.3585 0.2901 0.2342 0.1887 0.1516 0.1216 
1 0.1652 0.2725 0.3364 0.3683 0.3774 0.3703 0.3526 0.3282 0.3000 0.2702 
2 0.0159 0.0528 0.0988 0.1458 0.1887 0.2246 0.2521 0.2711 0.2818 0.2852 
3 0.0010 0.0065 0.0183 0.0364 0.0596 0.0860 0.1139 0.1414 0.1672 0.1901 
4 0.0000 0.0006 0.0024 0.0065 0.0133 0.0233 0.0364 0.0523 0.0703 0.0898 
5 0.0000 0.0000 0.0002 0.0009 0.0022 0.0048 0.0088 0.0145 0.0222 0.0319 
6 0.0000 0.0000 0.0000 0.0001 0.0003 0.0008 0.0017 0.0032 0.0055 0.0089 
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0005 0.0011 0.0020 
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 
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 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.0972 0.0776 0.0617 0.0490 0.0388 0.0306 0.0241 0.0189 0.0148 0.0115 
1 0.2403 0.2115 0.1844 0.1595 0.1368 0.1165 0.0986 0.0829 0.0693 0.0576 
2 0.2822 0.2740 0.2618 0.2466 0.2293 0.2109 0.1919 0.1730 0.1545 0.1369 
3 0.2093 0.2242 0.2347 0.2409 0.2428 0.2410 0.2358 0.2278 0.2175 0.2054 
4 0.1099 0.1299 0.1491 0.1666 0.1821 0.1951 0.2053 0.2125 0.2168 0.2182 
5 0.0435 0.0567 0.0713 0.1868 0.1028 0.1189 0.1345 0.1493 0.1627 0.1746 
6 0.0134 0.0193 0.0266 0.0353 0.0454 0.0566 0.0689 0.0819 0.0954 0.1091 
7 0.0033 0.0053 0.0080 0.0115 0.0160 0.0216 0.0282 0.0360 0.0448 0.0545 
8 0.0007 0.0012 0.0019 0.0030 0.0046 0.0067 0.0094 0.0128 0.0171 0.0222 
9 0.0001 0.0002 0.0004 0.0007 0.0011 0.0017 0.0026 0.0038 0.0053 0.0074 

10 0.0000 0.0000 0.0001 0.0001 0.0002 0.0004 0.0006 0.0009 0.0014 0.0020 
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0005 
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.0090 0.0069 0.0054 0.0041 0.0032 0.0024 0.0018 0.0014 0.0011 0.0008 
1 0.0477 0.0392 0.0321 0.0261 0.0211 0.0170 0.0137 0.0109 0.0087 0.0068 
2 0.1204 0.1050 0.0910 0.0783 0.0669 0.0569 0.0480 0.0403 0.0336 0.0278 
3 0.1920 0.1777 0.1631 0.1484 0.1339 0.1199 0.1065 0.0940 0.0823 0.0716 
4 0.2169 0.2131 0.2070 0.1991 0.1897 0.1790 0.1675 0.1553 0.1429 0.1304 
5 0.1845 0.1923 0.1979 0.2012 0.2023 0.2013 0.1982 0.1933 0.1868 0.1789 
6 0.1226 0.1356 0.1478 0.1589 0.1686 0.1768 0.1833 0.1879 0.1907 0.1916 
7 0.0652 0.0765 0.0883 0.1003 0.1124 0.1242 0.1356 0.1462 0.1558 0.1643 
8 0.0282 0.0351 0.0429 0.0515 0.0609 0.0709 0.0815 0.0924 0.1034 0.1144 
9 0.0100 0.0132 0.0171 0.0217 0.0271 0.0332 0.0402 0.0479 0.0563 0.0654 

10 0.0029 0.0041 0.0056 0.0075 0.0099 0.0128 0.0163 0.0205 0.0253 0.0308 
11 0.0007 0.0010 0.0015 0.0022 0.0030 0.0041 0.0055 0.0072 0.0094 0.0120 
12 0.0001 0.0002 0.0003 0.0005 0.0008 0.0011 0.0015 0.0021 0.0029 0.0039 
13 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0003 0.0005 0.0007 0.0010 
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 

 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.0006 0.0004 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0000 
1 0.0054 0.0042 0.0033 0.0025 0.0020 0.0015 0.0011 0.0009 0.0007 0.0005 
2 0.0229 0.0188 0.0153 0.0124 0.0100 0.0080 0.0064 0.0050 0.0040 0.0031 
3 0.0619 0.0531 0.0453 0.0383 0.0323 0.0270 0.0224 0.0185 0.0152 0.0123 
4 0.1181 0.1062 0.0947 0.0839 0.0738 0.0645 0.0559 0.0482 0.0412 0.0350 
5 0.1698 0.1599 0.1493 0.1384 0.1272 0.1161 0.1051 0.0945 0.0843 0.0746 
6 0.1907 0.1881 0.1839 0.1782 0.1712 0.1632 0.1543 0.1447 0.1347 0.1244 
7 0.1714 0.1770 0.1811 0.1836 0.1844 0.1836 0.1812 0.1774 0.1722 0.1659 
8 0.1251 0.1354 0.1450 0.1537 0.1614 0.1678 0.1730 0.1767 0.1790 0.1797 
9 0.0750 0.0849 0.0952 0.1056 0.1158 0.1259 0.1354 0.1444 0.1526 0.1597 

10 0.0370 0.0440 0.0516 0.0598 0.0686 0.0779 0.0875 0.0974 0.1073 0.1171 
(Continued)  
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11 0.0151 0.0188 0.0231 0.0280 0.0336 0.0398 0.0467 0.0542 0.0624 0.0710 
12 0.0051 0.0066 0.0085 0.0108 0.0136 0.0168 0.0206 0.0249 0.0299 0.0355 
13 0.0014 0.0019 0.0026 0.0034 0.0045 0.0058 0.0074 0.0094 0.0118 0.0146 
14 0.0003 0.0005 0.0006 0.0009 0.0012 0.0016 0.0022 0.0029 0.0038 0.0049 
15 0.0001 0.0001 0.0001 0.0002 0.0003 0.0004 0.0005 0.0007 0.0010 0.0013 
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0003 

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 
2 0.0024 0.0018 0.0014 0.0011 0.0008 0.0006 0.0005 0.0003 0.0002 0.0002 
3 0.0100 0.0080 0.0064 0.0051 0.0040 0.0031 0.0024 0.0019 0.0014 0.0011 
4 0.0295 0.0247 0.0206 0.0170 0.0139 0.0113 0.0092 0.0074 0.0059 0.0046 
5 0.0656 0.0573 0.0496 0.0427 0.0365 0.0309 0.0260 0.0217 0.0180 0.0148 
6 0.1140 0.1037 0.0936 0.0839 0.0746 0.0658 0.0577 0.0501 0.0432 0.0370 
7 0.1585 0.1502 0.1413 0.1318 0.1221 0.1122 0.1023 0.0925 0.0830 0.0739 
8 0.1790 0.1768 0.1732 0.1683 0.1623 0.1553 0.1474 0.1388 0.1296 0.1201 
9 0.1658 0.1707 0.1742 0.1763 0.1771 0.1763 0.1742 0.1708 0.1661 0.1602 

10 0.1268 0.1359 0.1446 0.1524 0.1593 0.1652 0.1700 0.1734 0.1755 0.1762 
11 0.0801 0.0895 0.0991 0.1089 0.1185 0.1280 0.1370 0.1455 0.1533 0.1602 
12 0.0417 0.0486 0.0561 0.0642 0.0727 0.0818 0.0911 0.1007 0.1105 0.1201 
13 0.0178 0.0217 0.0260 0.0310 0.0366 0.0429 0.0497 0.0572 0.0653 0.0739 
14 0.0062 0.0078 0.0098 0.0122 0.0150 0.0183 0.0221 0.0264 0.0314 0.0370 
15 0.0017 0.0023 0.0030 0.0038 0.0049 0.0062 0.0078 0.0098 0.0121 0.0148 
16 0.0004 0.0005 0.0007 0.0009 0.0013 0.0017 0.0022 0.0028 0.0036 0.0046 
17 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0005 0.0006 0.0008 0.0011 
18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 

n = 25 
   p 
t   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0 0.7778 0.6035 0.4670 0.3604 0.2774 0.2129 0.1630 0.1244 0.0946 0.0718 
1 0.1964 0.3079 0.3611 0.3754 0.3650 0.3398 0.3066 0.2704 0.2340 0.1994 
2 0.0238 0.0754 0.1340 0.1877 0.2305 0.2602 0.2770 0.2821 0.2777 0.2659 
3 0.0018 0.0118 0.0318 0.0600 0.0930 0.1273 0.1598 0.1881 0.2106 0.2265 
4 0.0001 0.0013 0.0054 0.0137 0.0269 0.0447 0.0662 0.0899 0.1145 0.1384 
5 0.0000 0.0001 0.0007 0.0024 0.0060 0.0120 0.0209 0.0329 0.0476 0.0646 
6 0.0000 0.0000 0.0001 0.0003 0.0010 0.0026 0.0052 0.0095 0.0157 0.0239 
7 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0011 0.0022 0.0042 0.0072 
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0009 0.0018 
9 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 

10 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 
(Continued)  
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 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

0 0.0543 0.0409 0.0308 0.0230 0.0172 0.0128 0.0095 0.0070 0.0052 0.0038 
1 0.1678 0.1395 0.1149 0.0938 0.0759 0.0609 0.0486 0.0384 0.0302 0.0236 
2 0.2488 0.2283 0.2060 0.1832 0.1607 0.1392 0.1193 0.1012 0.0851 0.0708 
3 0.2358 0.2387 0.2360 0.2286 0.2174 0.2033 0.1874 0.1704 0.1530 0.1358 
4 0.1603 0.1790 0.1940 0.2047 0.2110 0.2130 0.2111 0.2057 0.1974 0.1867 
5 0.0832 0.1025 0.1217 0.1399 0.1564 0.1704 0.1816 0.1897 0.1945 0.1960 
6 0.0343 0.0466 0.0606 0.0759 0.0920 0.1082 0.1240 0.1388 0.1520 0.1633 
7 0.0115 0.0173 0.0246 0.0336 0.0441 0.0559 0.0689 0.0827 0.0968 0.1108 
8 0.0032 0.0053 0.0083 0.0123 0.0175 0.0240 0.0318 0.0408 0.0511 0.0623 
9 0.0007 0.0014 0.0023 0.0038 0.0058 0.0086 0.0123 0.0169 0.0226 0.0294 

10 0.0001 0.0003 0.0006 0.0010 0.0016 0.0026 0.0040 0.0059 0.0085 0.0118 
11 0.0000 0.0001 0.0001 0.0002 0.0004 0.0007 0.0011 0.0018 0.0027 0.0040 
12 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0003 0.0005 0.0007 0.0012 
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 

0 0.0028 0.0020 0.0015 0.0010 0.0008 0.0005 0.0004 0.0003 0.0002 0.0001 
1 0.0183 0.0141 0.0109 0.0083 0.0063 0.0047 0.0035 0.0026 0.0020 0.0014 
2 0.0585 0.0479 0.0389 0.0314 0.0251 0.0199 0.0157 0.0123 0.0096 0.0074 
3 0.1192 0.1035 0.0891 0.0759 0.0641 0.0537 0.0446 0.0367 0.0300 0.0243 
4 0.1742 0.1606 0.1463 0.1318 0.1175 0.1037 0.0906 0.0785 0.0673 0.0572 
5 0.1945 0.1903 0.1836 0.1749 0.1645 0.1531 0.1408 0.1282 0.1155 0.1030 
6 0.1724 0.1789 0.1828 0.1841 0.1828 0.1793 0.1736 0.1661 0.1572 0.1472 
7 0.1244 0.1369 0.1482 0.1578 0.1654 0.1709 0.1743 0.1754 0.1743 0.1712 
8 0.0744 0.0869 0.0996 0.1121 0.1241 0.1351 0.1450 0.1535 0.1602 0.1651 
9 0.0373 0.0463 0.0562 0.0669 0.0781 0.0897 0.1013 0.1127 0.1236 0.1336 

10 0.0159 0.0209 0.0269 0.0338 0.0417 0.0504 0.0600 0.0701 0.0808 0.0916 
11 0.0058 0.0080 0.0109 0.0145 0.0189 0.0242 0.0302 0.0372 0.0450 0.0536 
12 0.0018 0.0026 0.0038 0.0054 0.0074 0.0099 0.0130 0.0169 0.0214 0.0268 
13 0.0005 0.0007 0.0011 0.0017 0.0025 0.0035 0.0048 0.0066 0.0088 0.0115 
14 0.0001 0.0002 0.0003 0.0005 0.0007 0.0010 0.0015 0.0022 0.0031 0.0042 
15 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0004 0.0006 0.0009 0.0013 
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0004 
17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 

 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

0 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1 0.0011 0.0008 0.0006 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001 0.0000 
2 0.0057 0.0043 0.0033 0.0025 0.0018 0.0014 0.0010 0.0007 0.0005 0.0004 
3 0.0195 0.0156 0.0123 0.0097 0.0076 0.0058 0.0045 0.0034 0.0026 0.0019 
4 0.0482 0.0403 0.0334 0.0274 0.0224 0.0181 0.0145 0.0115 0.0091 0.0071 
5 0.0910 0.0797 0.0691 0.0594 0.0506 0.0427 0.0357 0.0297 0.0244 0.0199 
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6 0.1363 0.1250 0.1134 0.1020 0.0908 0.0801 0.0700 0.0606 0.0520 0.0442 
7 0.1662 0.1596 0.1516 0.1426 0.1327 0.1222 0.1115 0.1008 0.0902 0.0800 
8 0.1680 0.1690 0.1681 0.1652 0.1607 0.1547 0.1474 0.1390 0.1298 0.1200 
9 0.1426 0.1502 0.1563 0.1608 0.1635 0.1644 0.1635 0.1609 0.1567 0.1511 

10 0.1025 0.1131 0.1232 0.1325 0.1409 0.1479 0.1536 0.1578 0.1603 0.1612 
11 0.0628 0.0726 0.0828 0.0931 0.1034 0.1135 0.1230 0.1319 0.1398 0.1465 
12 0.0329 0.0399 0.0476 0.0560 0.0650 0.0745 0.0843 0.0943 0.1043 0.1140 
13 0.0148 0.0188 0.0234 0.0288 0.0350 0.0419 0.0495 0.0578 0.0667 0.0760 
14 0.0057 0.0076 0.0099 0.0127 0.0161 0.0202 0.0249 0.0304 0.0365 0.0434 
15 0.0019 0.0026 0.0036 0.0048 0.0064 0.0083 0.0107 0.0136 0.0171 0.0212 
16 0.0005 0.0008 0.0011 0.0015 0.0021 0.0029 0.0039 0.0052 0.0068 0.0088 
17 0.0001 0.0002 0.0003 0.0004 0.0006 0.0009 0.0012 0.0017 0.0023 0.0031 
18 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0003 0.0005 0.0007 0.0009 
19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 

 0.41 0.42 0.43 0.44 0.45 .046 0.47 0.48 0.49 0.50 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.0003 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
3 0.0014 0.0011 0.0008 0.0006 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001 
4 0.0055 0.0042 0.0032 0.0024 0.0018 0.0014 0.0010 0.0007 0.0005 0.0004 
5 0.0161 0.0129 0.0102 0.0081 0.0063 0.0049 0.0037 0.0028 0.0021 0.0016 
6 0.0372 0.0311 0.0257 0.0211 0.0172 0.0138 0.0110 0.0087 0.0068 0.0053 
7 0.0703 0.0611 0.0527 0.0450 0.0381 0.0319 0.0265 0.0218 0.0178 0.0143 
8 0.1099 0.0996 0.0895 0.0796 0.0701 0.0612 0.0529 0.0453 0.0384 0.0322 
9 0.1442 0.1363 0.1275 0.1181 0.1084 0.0985 0.0886 0.0790 0.0697 0.0609 

10 0.1603 0.1579 0.1539 0.1485 0.1419 0.1342 0.1257 0.1166 0.1071 0.0974 
11 0.1519 0.1559 0.1583 0.1591 0.1583 0.1559 0.1521 0.1468 0.1404 0.1328 
12 0.1232 0.1317 0.1393 0.1458 0.1511 0.1550 0.1573 0.1581 0.1573 0.1550 
13 0.0856 0.0954 0.1051 0.1146 0.1236 0.1320 0.1395 0.1460 0.1512 0.1550 
14 0.0510 0.0592 0.0680 0.0772 0.0867 0.0964 0.1060 0.1155 0.1245 0.1328 
15 0.0260 0.0314 0.0376 0.0445 0.0520 0.0602 0.0690 0.0782 0.0877 0.0974 
16 0.0113 0.0142 0.0177 0.0218 0.0266 0.0321 0.0382 0.0451 0.0527 0.0609 
17 0.0042 0.0055 0.0071 0.0091 0.0115 0.0145 0.0179 0.0220 0.0268 0.0322 
18 0.0013 0.0018 0.0024 0.0032 0.0042 0.0055 0.0071 0.0090 0.0114 0.0143 
19 0.0003 0.0005 0.0007 0.0009 0.0013 0.0017 0.0023 0.0031 0.0040 0.0053 
20 0.0001 0.0001 0.0001 0.0002 0.0003 0.0004 0.0006 0.0009 0.0012 0.0016 
21 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0003 0.0004 
22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 
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Table A.8 Critical values of the Kruskal-Wallis test 

 

n1 n2 n3 α n1 n2 n3 α 
2 1 1 2.7000 0.500    4.7000 0.101 
2 2 1 3.6000 0.200 4 4 1 6.6667 0.010 
2 2 2 4.5714 0.067    6.1667 0.022 
   3.7143 0.200    4.9667 0.048 

3 1 1 3.2000 0.300    4.8667 0.054 
3 2 1 4.2857 0.100    4.1667 0.082 
   3.8571 0.133    4.0667 0.102 

3 2 2 5.3572  0.029 4 4 2 7.0364 0:006 
   4.7143 0.048    6.8727  0.011 
   4.5000 0.067    5.4545 0.046 
   4.4643 0.105    5.2364 0.052 

3 3 1 5.1429 0.043    4.5545 0.098 
   4.5714 0.100    4.4455 0.103 
   4.0000 0.129 4 4 3 7.1439 0.010 

3 3 2 6.2500 0.011    7.1364 0.011 
   5.3611 0.032    5.5985  0.049 
   5.1389 0.061    5.5758 0.051 
   4.5556 0.100    4.5455 0.099 
   4.2500 0.121    4.4773 0.102 

3 3 3 7.2000 0.004 4 4 4 7.6538 0.008 
   6.4889 0.011    7.5385 0.011 
   5.6889 0.029    5.6923 0.049 
   5.6000 0.050    5.6538 0.054 
   5.0667 0.086    4.6539 0.097 
   4.6222 0.100    4.5001 0.104 

4 1 1 3.5714 0.200 5 1 1 3.8571 0.143 
4 2 1 4.8214 0.057 5 2 1 5.2500 0.036 
   4.5000 0.076    5.0000 0.048 
   4.0179 0.114    4.4500 0.071 

4 2 2 6.0000 0.014    4.2000 0.095 
   5.3333 0.033    4.0500 0.119 
   5.1250 0.052 5 2 2 6.5333 0.008 
   4.4583 0.100    6.1333 0.013 
   4.1667 0.105    5.1600 0.034 

4 3 1 5.8333 0.021    5.0400 0.056 
   5.2083 0.050    4.3733  0.090 
   5.0000 0.057    4.2933 0.122 
   4.0556 0.093 5 3 1 6.4000 0.012 
   3.8889 0.129    4.9600 0.048 

4 3 2 6.4444 0.008    4.8711 0.052 
   6.3000 0.011    4.0178 0.095 
   5.4444 0.046    3.8400 0.123 

(Continued)  
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value value 
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Table A.8 Critical values of the Kruskal-Wallis test 

 

n1 n2 n3 α n1 n2 n3 α 
2 1 1 2.7000 0.500    4.7000 0.101 
   4.4444 0.102    5.2509 0.049 

4 3 3 6.7455 0.010    5.1055 0.052 
   6.7091 0.013    4.6509 0.091 
   5.7909 0.046    4.4945 0.101 
   5.7273 0.050 5 3 3 7.0788 0.009 
   4.7091 0.092    6.9818 0.011 

5 3 3 5.6485 0.049 5 5 1 6.8364 0.011 
   5.5152 0.051    5.1273 0.046 
   4.5333 0.097    4.9091 0.053 
   4.4121 0.109    4.1091 0.086 

5 4 1 6.9545 0.008    4.0364 0.105 
   6.8400 0.011 5 5 2 7.3385 0.010 
   4.9855 0.044    7.2692 0.010 
   4.8600 0.056    5.3385 0.047 
   3.9873 0.098    5.2462 0.051 
   3.9600 0.102    4.6231 0.097 

5 4 2 7.2045 0.009    4.5077 0.100 
   7.1182 0.010 5 5 3 7.5780 0.010 
   5.2727 0.049    7.5429 0.010 
   5.2682 0.050    5.7055 0.046 
   4.5409 0.098    5.6264 0.051 
   4.5182 0.101    4.5451 0.100 

5 4 3 7.4449 0.010    4.5363 0.102 
   7.3949 0.011 5 5 4 7.8229 0.010 
   5.6564 0.049    7.7914 0.010 
   5.6308 0.050    5.6657 0.049 
   4.5487 0.099    5.6429 0.050 
   4.5231 0.103    4.5229 0.099 

5 4 4 7.7604 0.009    4.5200 0.101 
   7.7440 0.011 5 5 5 8.0000 0.009 
   5.6571 0.049    7.9800 0.010 
   5.6176 0.050    5.7800 0.049 
   4.6187 0.100    5.6600 0.051 
   4.5527 0.102    4.5600 0.100 

5 5 1 7.3091 0.009    4.5000 0.102 
 
 

Sample sizes Sample sizes Critical 
value value 

Critical 
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Table A.9 Friedman ANOVA table 

2
rχ

2
rχ

2
rχ  

 
k = 2 k = 3 k = 4 k = 5 

2
rχ  

p  2
rχ  

p  2
rχ  

p  2
rχ  

p  
0 1.000 0.000 1.000 0.0 1.000 0.0 1.000 
1 0.833 0.667 0.944 0.5 0.931 0.4 0.954 
3 0.500 2.000 0.528 1.5 0.653 1.2 0.691 
4 0.167 2.667 0.361 2.0 0.431 1.6 0.522 

  4.667 0.194 3.5 0.273 2.8 0.367 
  6.000 0.028 4.5 0.125 3.6 0.182 
    6.0 0.069 4.8 0.124 
    6.5 0.042 5.2 0.093 
    8.0 0.0046 6.4 0.039 
      7.6 0.024 
      8.4 0.0085 
      10.0 0.00077 
        
k = 6 k = 7 k = 8 k = 9 

2
rχ  

p  2
rχ  

p  2
rχ  

p  2
rχ  

p  
0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000 
0.33 0.956 0.286 0.964 0.25 0.967 0.222 0.971 
1.00 0.740 0.857 0.768 0.75 0.794 0.667 0.814 
1.33 0.570 1.143 0.620 1.00 0.654 0.889 0.865 
2.33 0.430 2.000 0.486 1.75 0.531 1.556 0.569 
3.00 0.252 2.571 0.305 2.25 0.355 2.000 0.398 
4.00 0.184 3.429 0.237 3.00 0.285 2.667 0.328 
4.33 0.142 3.714 0.192 3.25 0.236 2.889 0.278 
5.33 0.072 4.571 0.112 4.00 0.149 3.556 0.187 
6.33 0.052 5.429 0.085 4.75 0.120 4.222 0.154 
7.00 0.029 6.000 0.052 5.25 0.079 4.667 0.107 
8.33 0.012 7.143 0.027 6.25 0.047 5.556 0.069 
9.00 0.0081 7.714 0.021 6.75 0.038 6.000 0.057 
9.33 0.0055 8.000 0.016 7.00 0.030 6.222 0.048 

10.33 0.0017 8.857 0.0084 7.75 0.018 6.889 0.031 
12.00 0.00013 10.286 0.0036 9.00 0.0099 8.000 0.019 

  10.571 0.0027 9.25 0.0080 8.222 0.016 
  11.143 0.0012 9.75 0.0048 8.667 0.010 
  12.286 0.00032 10.75 0.0024 9.556 0.0060 
  14.000 0.000021 12.00 0.0011 10.667 0.0035 

(Exact distribution of  
6, 7, 8, 9]). p is the probability of obtaining a value of 
ponding value of 

 as great as or greater than the corres-
 for tables with two to nine sets of three ranks [l = 3; k  = 2, 3, 4, 5,

Appendix. Friedman ANOVA Table
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    12.25 0.00086 10.889 0.0029 
    13.00 0.00026 11.556 0.0013 
    14.25 0.000061 12.667 0.00066 
    16.00 0.0000036 13.556 0.00035 

k = 6 k = 7 k = 8 k = 9 
2
rχ  p  2

rχ  p  2
rχ  p  2

rχ  p   
      14.000 0.00020 
      14.222 0.000097 
      14.889 0.000054 
      16.222 0.000011 
      18.000 0.0000006 
        

k = 2 k = 3 k = 4 
2
rχ  p  2

rχ  p  2
rχ  p  2

rχ  p  
0.0 1.000 0.2 1.000 0.0 1.000 5.7 0.141 
0.6 0.958 0.6 0.958 0.3 0.992 6.0 0.105 
1.2 0.834 1.0 0.910 0.6 0.928 6.3 0.094 
1.8 0.792 1.8 0.727 0.9 0.900 6.6 0.077 
2.4 0.625 2.2 0.608 1.2 0.800 6.9 0.068 
3.0 0.542 2.6 0.524 1.5 0.754 7.2 0.054 
3.6 0.458 3.4 0.446 1.8 0.677 7.5 0.052 
4.2 0.375 3.8 0.342 2.1 0.649 7.8 0.036 
4.8 0.208 4.2 0.300 2.4 0.524 8.1 0.033 
5.4 0.167 5.0 0.207 2.7 0.508 8.4 0.019 
6.0 0.042 5.4 0.175 3.0 0.432 8.7 0.014 

  5.8 0.148 3.3 0.389 9.3 0.012 
  6.6 0.075 3.6 0.355 9.6 0.0069 
  70 0.054 3.9 0.324 9.9 0.0062 
  7.4 0.033 4.5 0.242 10.2 0.0027 
  8.2 0.017 4.8 0.200 10.8 0.0016 
  9.0 0.0017 5.1 0.190 11.1 0.00094 
    5.4 0.158 12.0 0.000072 
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Table A.10 Wilcoxon table  

 

n d α ′′  α′  n d α ′′  α′  

3 1 .750 .250 .125 14 13 .991 .009 .004 
4 1 .875 .125 .063  14 .989 .011 .005 
5 1 .938 .062 .031  22 .951 0.49 .025 
 2 .875 .125 .063  23 .942 .058 .029 

6 1 .969 .031 .016  26 .909 .091 .045 
 2 .937 .063 .031  27 .896 .104 .052 
 3 .906 .094 .047 15 16 .992 .008 .004 
 4 .844 .156 .078  17 .990 .010 .005 

7 1 .984 .016 .008  26 .952 .048 .024 
 2 .969 .031 .016  27 .945 .055 .028 
 4 .922 .078 .039  31 .905 .095 .047 
 5 .891 .109 .055  32 .893 .107 .054 

8 1 .992 .008 .004 16 20 .991 .009 .005 
 2 .984 .016 .008  21 .989 .011 .006 
 4 .961 .039 .020  30 .956 .044 .022 
 5 .945 .055 .027  31 .949 .051 .025 
 6 .922 .078 .039  36 .907 .093 .047 
 7 .891 .109 .055  37 .895 .105 .052 

9 2 .992 .008 .004 17 24 .991 .009 .005 
 3 .988 .012 .006  25 .989 .011 .006 
 6 .961 .039 .020  35 .955 .045 .022 
 7 .945 .055 .027  36 .949 .051 .025 
 9 .902 .098 .049  42 .902 .098 .049 
 10 .871 .129 .065  43 .891 .109 .054 

10 4 .990 .010 .005 18 28 .991 .009 .005 
 5 .986 .014 .007  29 .990 .010 .005 
 9 .951 .049 .024  41 .952 .048 .024 
 10 .936 .064 .032  42 .946 .054 .027 
 11 .916 .084 .042  48 .901 .099 .049 
 12 .895 .105 .053  49 .892 .108 .054 

11 6 .990 .010 .005 19 33 .991 .009 .005 
 7 .986 .014 .007  34 .989 .011 .005 
 11 .958 .042 .021  47 .951 .049 .025 
 12 .946 .054 .027  48 .945 .055 .027 
 14 .917 .083 .042  54 .904 .096 .048 
 15 .898 .102 .051  55 .896 .104 .052 

Confidence 
coefficient 

Confidence 
coefficient 

Appendix. Wilcoxon Table

(Continued)  

(d-factors for Wilcoxon signed-rank test and confidence intervals for the median (α′ = one-sided 
significance level, α″ = two-sided significance level) 

211



Table A.10 Wilcoxon table 

n d α ′′  α′  n d α ′′  α′  

8 .991 .009 .005 38 .991 .009 .005 
 9 .988 .012 .006  39 .989 .011 .005 
 14 .958 .042 .021  53 .952 .048 .024 
 15 .948 .052 .026  54 .947 .053 .027 
 18 .908 .092 .046  61 .903 .097 .049 
 19 .890 .110 .055  62 .895 .105 .053 

 11 .990 .010 .005  44 .990 .010 .005 
 18 .952 .048 .024  59 .954 .046 .023 
 19 .943 .057 .029  60 .950 .050 .025 
 22 .906 .094 .047  68 .904 .096 .048 
 23 .890 .110 .055  69 .897 .103 .052 

 50 .990 .010 .005  63 .989 .011 .005 
 66 .954 .046 .023  82 .951 .049 .025 
 67 .950 .050 .025  83 .947 .053 .026 
 76 .902 .098 .049  92 .905 .095 .048 
 77 .895 .105 .053  93 .899 .101 .051 

 56 .990 .010 .005  70 .989 .011 .005 
 74 .952 .048 .024  90 .952 .048 .024 
 75 .948 .052 .026  91 .948 .052 .026 
 84 .902 .098 .049  101 .904 .096 .048 
 85 .895 .105 .052  102 .899 .101 .051 

 

12 

13 10 .992 .008 .004

22 49 .991 .009 .005

23 55 .991 .009 .005

20 

21 43 .991 .009 .005 

24 62 .990 .010 .005 

25 69 .990 .010 .005 

Confidence 
coefficient 

Confidence 
coefficient 
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alpha, 19, 47, 78, 141, 145 
analysis 

comparative, 122 
correlation, 101, 102 
exploratory, 160 

regression, 90, 101, 139 
statistical, 3, 73 
Wilcoxon, 183 

189, 281, 283, See also analysis of 
variance 

 
B 
 
beta, 47, 78 
beta error, 141 
bioequivalence, 88, 89, 126, 132 
biostatistics, 16, 27, 53, 64 
 
C 
 
chemistry, 1 
Chi Square, 142, 143, 144, 150, 152, 

212 
Cochran Test, 154 
coefficient of determination, 105 
confidence interval, 24, 26, 29, 30, 

31, 33, 36, 37, 38, 40, 41, 42, 46, 
47, 57, 60, 63, 73, 76, 86, 87, 97, 
98, 100, 106, 108, 112, 113, 114, 
115, 116, 120, 129, 130, 131, 134, 
136, 137 

150, 151, 153, 154 

contrasts, 85, 172, 177, 193 
multiple, 171, 193 
pair-wise, 74, 75, 85 

187 
correlation, 101, 102, 104 

coefficient, 102, 103, 105 
negative, 102, 103, 105 
perfect, 101 
positive, 102, 103 

 
D 
 
D value, 109, 181 
data 

bimodal, 141 
binary, 110, 112, 139 
binomial, 110, 112, 117 
categorical, 112 
continuous, 139 
correlation, 101 
frequency, 151 
interval, 167, 186 
interval-ratio, 112, 139, 142, 178 
nominal, 82, 112, 139, 142 
ordinal, 112, 139, 142, 167, 178 
paired, 148 
patterns, 96 
proportion, 142 
qualitative, 82, 110, 139 

regression, 98, 105 
scale, 150 
transformed, 107 
unimodal, 141 

degrees of freedom, 19, 24, 29, 41, 

190, 197 

Index 

A 

correction factor, 9, 168, 170, 182, 

of variance, 65, 67, 68, 70, 85, 
89, 94, 139, 167 

ANOVA, 65, 67, 70, 71, 73, 74, 80 
83, 84, 94, 139, 154, 171, 172, 177, 

contingency table, 142, 145, 149, 
49, 65, 68, 71, 72, 73, 75, 80, 82,
86, 94, 152, 154, 168, 175, 187, 

quantitative, 67, 82, 90, 139 
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delta, 79 
design, 72 

2 x 2, 142 
ANOVA, 68, 70, 154 
block, 82, 84, 154, 172 

79, 82, 86, 87, 89, 167, 172 
contrast, 171 
matched pair, 72, 74 
paired, 73, 148 
pre-post, 149 
randomized block, 65, 77, 79, 80, 

82 
sample, 82 

distribution 
approximation, 112 
binomial, 110, 114, 162, 219 
Chi Square, 143 
curve, 19 

normal. See distribution:  z 
Poisson, 115, 118 
skewed, 141 

uniform, 141 
z, 3, 15, 17, 19, 24, 29, 33, 48, 49, 

51, 81, 110, 112, 113, 117, 122, 
141, 142, 149, 171, 177, 178, 
182 

 
E 
 
error 

beta, 47, 78, 79 
estimate, 71 
mean, 22 

random, 19, 64, 67, 70 
round-off, 56, 153 
standard, 31, 54, 112 
statistical, 9 
sum of squares, 80 
Type I. See alpha error 

Type II. See beta error 
estimate 

confidence interval, 36, 46, 114 
error, 71 
mean, 24, 27 
point, 24 
sample mean, 27 
unbiased, 5, 27, 94 
variance, 49, 94 

 
F 
 
Friedman, 172, 175, 177, 185, 187, 

281, 283 
 
H 
 
hypothesis 

alternative. See hypothesis:  null 
difference, 53, 88 
equivalence, 126 
no difference, 126 
null, 26, 38, 52, 75, 78, 86, 88, 73, 

76, 126, 136, 146 
test, 1, 26, 40, 41, 58, 60, 64, 66, 

67, 68, 77, 82, 124, 126, 187 
 
I 
 
interpretation, 1, 2 
 
K 
 
Kirby-Bauer Test, 73 
Kruskal-Wallis, 167, 168, 169, 170, 

171, 174, 185, 276, 279 
 
M 
 
Mann-Whitney U Test, 156, 157, 158, 

178, 214, 215, 217, 218 
McNemar’s Test, 149 
mean, 3, 4, 5, 6, 9, 11, 13, 15, 17, 19, 

22, 24, 27, 29, 31, 33, 34, 36, 40, 

140, 141, 161 

Index 

completely randomized, 65, 71, 72 

detection level, 47, 48, 49, 51, 76, 77, 
79, 80, 82, 89, 115 

F, 68, 94, 187, 203 

Student’s t, 19, 49, 51, 196 

alpha, 47, 74, 77, 78, 113, 141 

mean square, 71, 80, 94 

41, 42, 52, 56, 58, 63, 64, 65, 70, 
71, 74, 75, 86, 90, 110, 112, 114, 
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Index

common, 67 
estimate, 24 
grand, 70, 71 
population, 11, 15, 22, 24, 27, 44, 

111, 112, 140 
sample, 5, 11, 22, 24, 27, 29, 36, 

38, 41, 42, 44, 45, 47, 48, 52, 60, 
61 

sum of rank, 171 
true, 5, 22, 24, 26, 29, 31, 36, 46 

median, 6, 7, 15, 17, 33, 285 
microbiology, 1, 3, 47, 48, 49, 58, 60, 

92 
MiniTab, 31, 36, 73, 74, 75, 84, 85, 

87, 93 
mode, 6, 15, 17 
 
P 
 
Poisson Test, 115, 118, 119, 120, 124 
population, 5, 11, 17, 19, 22, 27, 29, 

40, 41, 43, 44, 46, 47, 65, 69, 72, 
83, 132, 187 
mean, 5, 11, 15, 22, 24, 27, 29, 36, 

111, 112, 140 
parameters, 5, 86, 141 
standard deviation, 5, 15, 27 
target, 5 
true, 11 
variance, 15 

population proportion, 83, 114, 134, 
135 

power of the statistic, 79 
power re-expression, 97 
power scale, 96, 97 
 
Q 
 
Quade Test, 185, 186 
 
R 
 
re-expression, 96, 97 
regression analysis, 90, 97, 101, 139 
 
 

S 
 
scatter, 5, 7, 22 
scatterplot, 94 
sigma, 12, 13, 15 
Sign Test, 162 
six-step procedure, 1, 21, 38, 43, 54, 

152, 155, 157, 163, 168, 175, 178, 
182, 183, 189 

slope, 92, 93, 102 
regression line, 91, 102, 104, 105 

standard deviation, 5, 6, 7, 9, 11, 13, 
15, 17, 19, 22, 24, 27, 29, 31, 38, 
39, 40, 41, 42, 47, 48, 50, 51, 73, 
78, 83, 94, 110, 112, 121 

statistics, 1, 3, 5, 13, 15, 26, 47, 91, 
131, 141, 171, 181 
nonparametric, 140, 141, 142, 171, 

178 
parametric, 33, 140, 141, 154, 171, 

181 
Student’s t Test, 19, 21, 24, 29, 31, 

36, 42, 49, 51, 54, 65, 68, 70, 81, 
86, 100, 112, 196 

 
T 
 
test 

ANOVA, 67, 139 
bioequivalence, 86, 89, 132 
comparative, 64 
contrast, 74, 171 
difference, 52, 53, 60, 126 
directional, 126, 182 
distribution-free, 141 
equivalence, 52, 53, 56, 60, 86, 88, 

90, 92, 124, 126, 130, 131, 132 
goodness of fit, 141 

156 
interval, 42 

58, 65, 67, 69, 73, 75, 76, 81, 84, 
90, 117, 126, 129, 131, 142, 149, 

independent, 64, 65, 78, 82,  
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lower-tail, 26, 29, 41, 42, 44, 45, 
58, 65, 66, 67, 68, 69, 70, 73, 75, 

165, 178, 185 

noninferiority, 53, 56, 58, 60, 86, 
88, 90, 91, 92, 126, 128, 131, 
132 

nonsuperiority, 53, 56, 57, 58, 86, 
88, 90, 91, 92, 126, 129, 131, 
132 

one-sample, 47, 63 
one-sided, 54, 88, 133 
one-tail, 29, 60, 61, 69, 92, 126, 

128, 130, 181, 182, 184 
paired, 73, 75, 78, 82, 77 
pooled t, 64, 69, 78 
pooled variance, 82 
proportion, 121, 124, 142 
Q Test. See Cochran Test 
randomness, 141 
restriction, 40 
significance, 47, 57 

142, 178 
two-tail, 25, 26, 29, 43, 44, 53, 60, 

65, 66, 67, 68, 69, 70, 73, 75, 81, 

upper-tail, 26, 29, 42, 45, 46, 58, 
65, 66, 67, 68, 70, 73, 75, 81, 84, 

tolerance, 54, 56, 58 
level, 57 
limit, 40, 60, 118, 131 

proportion, 120 
Tukey Method, 74, 85 
 
U 
 
uncertainty, 20, 29, 47, 101 
 
V 
 
variability, 5, 9, 10, 11, 13, 14, 22, 

104, 105, 125, 181 
mean, 22 
points, 9, 13 
random, 29, 94 

159, 181 
dependent, 90 
independent, 90 

variance, 13, 14, 15, 49, 64, 65, 69, 
72, 73, 80, 94, 70, 112, 140 
common, 74 
equal, 83 
estimate, 94 
nonequal, 83 
paired, 82 
pooled, 69, 82 
population, 15 
sample, 15, 70 

 
W 
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Y 
 
Yates Adjustment Factor, 114 
 
Z 
 
z Distribution. See distribution:  z 
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Wilcoxon, 181, 182, 183, 184, 285, 
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matched pair, 64, 65, 73, 80, 181 

82, 83, 88, 92, 94, 121, 124, 
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142, 143, 144, 149, 152, 157, 
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